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Introduction

Turbulence models have become nowadays more and more important in fluid
dynamics computation, as the numerical approximation of the pure Navier-
Stokes equations becomes unstable for large values of Reynolds number. This
thesis deals with the mathematical problem of turbulence in the hydraulics of
incompressible fluids. We will consider three related but different problems.
First of all, we will analyze analytical and numerical properties of ¢-8 model,
a two-equations Boussinesq’s turbulence model which is alternative to the k-
€ one and has much better stability and positivity properties. We will then
analyze Large Eddy Simulation (LES) models in various versions: with or
without space filtering terms and with or without eddy viscosity. We will
study analytical properties of space filtering (SF) model and then analytical
properties of eddy viscosity space filtering (EVSF) model, providing condi-
tions for existence and uniqueness of solution. Finally, we will provide a
finite elements numerical algorithm to solve LES models and we will show
its performance in the cavity test problem.

The problem of turbulence in hydraulics arises from Navier-Stokes equa-
tions which describe the flow of an incompressible fluid. It is still unknown
an analytical way of solving these equations except in very simple cases and
therefore we must rely on numerical approximation their solution. Consis-
tent algorithm to solve these equations prove to be unstable when viscosity
is small enough to let Reynolds number be above 10° unless a very fine space
mesh is used. On the other hand, experiments show that the flow is no more
laminar at these Reynolds number and highly fluctuating fluid velocities ap-
pear. This physical and mathematical effect is called turbulence. It causes
a subtraction of energy from the mean motion which causes the high fluctu-
ation of velocity and is then dissipated by viscosity forces. This effect can
be roughly represented by an increase in kinematic viscosity called turbulent
viscosity.
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The Reynolds mathematical approach to the problem of turbulence is
to average Navier-Stokes equations over time or over a set of experimen-
tal data and, using average properties, reducing Navier-Stokes equations to
the formally identical Reynolds equations with a Reynolds stress tensor as
an additional term. This tensor is later approximated by Boussinesq using
the eddy viscosity concept. The determination of eddy viscosity’s value is
a problem in itself: it can be taken constant, depending on fluid’s velocity
or taken as a solution of one or two differential equations. The k-€¢ two dif-
ferential equations model is the most popular and the one which gives the
best numerical results. However it suffers stability and positivity problems,
since an analytical proof of its positivity, on which a positive numerical al-
gorithm can be based, is given only in very regular cases. In this work we
use the -0 two equations model proposed by Mohammadi [32], which is
based on k-e model changing its variables and approximating viscous terms;
this model has much better stability and positivity properties and, starting
from an analytical proof of its existence, uniqueness, stability and positivity
given by Mohammadi [32], we prove the positivity and stability of a suitable
numerical scheme.

Another mathematical approach to the problem of turbulence is to aver-
age Navier-Stokes equations on space instead of time using convolutions and
Fourier transform instead of very simple ensemble average. We now cannot
reduce convective averaged term as a sum of a convective-like term and a
stress tensor, as we did in Reynolds equations, but we have to approximate
each part of the convective averaged term. Using a Taylor expansion, where
expanded terms do not involve highly fluctuating velocities, and a Taylor
expansion of the convolution filter, where expanded terms are highly fluc-
tuating, we obtain in this way space filtering (SF) large eddy simulation
turbulence model. For the analytical solution of this model we provide an
existence and uniqueness problem provided that initial data is regular and
small enough. To do this we use Schauder’s fixed point theorem and, relying
on the fact that initial velocity is small enough in a quite high Sobolev norm,
we manage to control the nonlinear space filtering and convective terms with
the positive viscous term thus satisfying the main condition of Schauder’s
theorem. The numerical approximation of SF model using a three-steps
time advancement, which splits SF model into two Stokes problems and one
Burgers problem which is resolved using an iterative method, proves to be
rather inefficient compared to the same method used to solve Navier-Stokes
equations: it needs a much smaller time step to converge at low Reynolds
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numbers, while it does not work anymore at moderate Reynolds number.
This is coherent to the smallness condition on initial velocity which appears
in existence theorem, which is no more satisfied when Reynolds number is too
large, and therefore the positive viscous term cannot control the nonlinear
space filtering term anymore.

Due to the poor numerical properties of SF model, it is common to ap-
proximate the averaged convective term with a convective-like term and an
eddy viscosity term, obtaining eddy viscosity (EV) large eddy simulation
model. Another possibility is to add again the space filtering term obtain-
ing therefore the eddy viscosity space filtering (EVSF) large eddy simulation
model. Since an eddy viscosity, depending on the norm of the mean ve-
locity gradient, is now present, these models have much better analytical
and numerical properties than SF model. Following the proof of existence
and uniqueness of analytical solution of EV model given by Ladyzhenskaya
(23] we managed to prove existence and uniqueness of analytical solution of
EVSF model using a Galerkin approximation method and using eddy vis-
cosity term to control, in an high enough Sobolev norm, the space filtering
term. We need to require that eddy viscosity coefficient is large enough
compared to the space filtering coefficient. Convective terms are then con-
trolled by another part of eddy viscosity term using Gronwall’s lemma. This
proof does not need a small initial data and the condition on eddy viscosity
and space filtering coeflicient is compatible with the usual values taken for
them in numerical simulations. The previous algorithm proved to be quite
efficient with EV model and it works for every Reynolds number up to 10°
with quite small eddy viscosity coefficient. However EVSF model needs an
eddy viscosity constant too large and a time step too small to be considered
efficient. -

In Chapter 1 we present the physical and mathematical description of the
problem of turbulence and the derivation of Reynolds equations relying on
strong ensemble average properties. Then we introduce Boussinesq’s approx-
imation presenting its main criticisms, an original generalization and a small
correction, concluding with one and two equations turbulence models. Then
we take the other approach to the mathematics of turbulence: we present
the properties of convolution and Fourier transform and various examples
of filters which are used to obtain Leonard’s approximation, Clark et al.’s
approximation an Yeo and Bedford’s model which constitute SF model and
Smagorinsky’s model which gives EV and EVSF models.

In Chapter 2 we build, starting from k-e model, -8 model and approx-
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imate its viscous terms to obtain two simpler equations. After presenting
Gronwall’s lemmae we give a rapid sketch of Mohammadi’s proof of exis-
tence and uniqueness of p-6 model’s analytical solution. Then we discretize
spatially ¢-8 model with finite elements obtaining a positive and stable nu-
merical solution. We switch then to time and space discretization and provide
a numerical algorithm showing existence, positivity and stability.

In Chapter 3 we present the existence theorem for SF model. We define
the starting set for Schauder’s theorem and show some control lemmae to
assure boundedness of high norms of solution. After showing compactness
of starting set and existence and continuity of Schauder’s map, we conclude
with a fixed point argument. Then we easily prove uniqueness and stability
of solution and the existence, under certain condition on external forces, of
periodic and stationary solutions.

In Chapter 4 we start by presenting two a priori estimates of solution using
an eddy viscosity coeflicient large enough; in order to deal with space filtering
term, we have to sum two different estimates to be able to prove the second
a priori estimates on high Sobolev norms of velocity. Then we use a Galerkin
technique to build a sequence of functions which converges to the solution of
EVSF model thanks to the control of viscous terms over space filtering and
convective terms. In order to deal with the highly nonlinear terms involved
we follow an idea of Minty and Browder to preserve the positive behaviour
of viscous term. Then we prove uniqueness, stability and decay of solution
under certain conditions on external forces.

In Chapter 5 we present a numerical scheme for Navier-Stokes, SF, EV
and EVSF models based on a three-step time splitting scheme proposed by
Glowinsky {18] which reduces our problem to two Stokes problems and one
Burgers problem. We introduce Taylor-Hood finite elements which satisfy
Ladyzhenskaya-Babugka-Brezzi condition and we provide an iterative conju-
gate gradient method to solve the linear systems derived from Stokes’ prob-
lems. Then we present an iterative nine-steps version of conjugate gradient
proposed by Girault and Raviart [17] to solve the nonlinear Burgers prob-
lem. We illustrate our test problem, the two dimensional cavity flow, and
the results obtained for low Reynolds numbers compared to results obtained
by Ghia et al. for Navier-Stokes with a very fine mesh. SF model proved
to be not worth the effort for low Reynolds numbers and does not work,
with our numerical scheme, for moderate and large Reynolds number, while
Navier-Stokes equations provide good agreement with Ghia at al.’s data. For
large Reynolds numbers we do not have comparative data anymore but EV
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model proves to be quite efficient, while EVSF problem needs a too much
large eddy viscosity constant to work.

I would like to thank Prof. Alberto Valli to have dedicated to this
work and to my numerical and analytical problems a lot of his time and
of his efforts. I would also thank Dr. Rosa Loredana Trotta, Prof. Roger
Lewandowski, Prof. Aronne Armanini, Prof. Olivier Pironneau and the
whole Department of Mathematics of the University of Trento for their scien-
tific help and my mother and my father for their personal support.
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instantaneous velocity

mean velocity

turbulent (fluctuating) velocity

Reynolds stress tensor

Reynolds number

time

the dimension of IRY, in our cases N =2 or N = 3
i-th coordinate axis

kinematic viscosity

turbulent eddy viscosity

partial derivative with respect to i-th coordinate
partial derivative with respect to time

mean velocity deformation tensor, D;; = 1/2[0,;U; + 8;U;]
gradient, (01, ...,0n)

Laplace operator, 2?’21 0;0;

total time derivative, G; + 2?7:1 U,0;

external forces

mean pressure

instantaneous pressure

turbulent (fluctuating) pressure

turbulent kinetic energy (per unit mass)

turbulent kinetic energy dissipation (per unit mass)
density

gravity acceleration

set of real numbers

set of natural numbers (zero excluded)

set of rational numbers

set of polynomials of degree &

9
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A spatial filter width

1 imaginary unit, v/—1

Q an open, connected and bounded subset of IR with regular
boundary

o0 the boundary of Q

7t the positive part of function 5, max (0,7)

7~ the negative part of function 5, max (0, —7)

Lr space of functions whose p-th power is integrable

L space of almost always bounded functions

wme space of functions in L? with distributional derivatives up
to order m in L?

Wmiee space of functions in L™ with distributional derivatives up
to order m in L*®

mH™ space of functions in L? with distributional derivatives up
to order m in L2, W™?

HE space of functions in H™ with zero trace on the boundary

L2 space of L? functions with a vanishing average

A(X;B) space of functions whose B-norm is in A(X)

h spatial grid size, the largest diameter of spheres circoscribing
each element

At temporal grid size, t"*1— "

SF space filtered LES model (1.44)

EV eddy viscosity LES model, (1.47) with A = 0

EVSF eddy viscosity space filtered LES model (1.47)



Chapter 1

Turbulence

In this chapter we are going to review the problem of turbulence in hydraulics,
its physical characteristics and the models adopted to describe turbulence ef-
fects. We will spend more words on k-€ and on Large Eddy Simulation mod-
els, since these are the most widely used and their analytical and numerical
properties are discussed in the other chapter of this work.

1.1 The equations of Navier-Stokes

The equations which describe the motion of an isotropic, incompressible new-
tonian fluid in a time-independent domain are the well-known Navier-Stokes
equations

N
1
atui"‘zujajui:"‘— ip + vAu; + f; 1=1,...,N
1=1 P (11)

N
Z ajuJ' = 0,
7j=1

where N is the dimension of the domain where the fluid is contained, 8, is the
derivative with respect to time, u; the velocity component, 8; the derivative
with respect to z;, v the kinematic viscosity, A the Laplacien operator, i.e.

N 8:6;, p the density of the fluid, which is assumed to be constant, p its
pressure and f; is the component of the external force. We will call the second
term of the first N equations convective term, the third term pressure term
and the fourth term viscous term. The last equation of (1.1) is called the
continuity equation.

11
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These equations must be considered together with boundary and initial
conditions in order to obtain a well-posed Cauchy problem. Usually, we give
as initial condition the value of velocity in every point of domain at initial
time. Boundary conditions vary according to the problem: we can give the
value of velocity at every point on the boundary if the domain is bounded, or
we can give information on the limit value of velocity as distance from fixed
point goes to infinity. In both these cases we have to give a condition on
pressure to assure its uniqueness: we can do this by stating that its average
pressure on the domain is zero.

1.2 The problem of turbulence

If we take Navier-Stokes equations (1.1), multiply the first N equations by
L/V?, where V is a scale velocity and L is a scale length, and we multiply
the continuity equation by L/V, we obtain

ou; X, . iy 10p v X 8% L ,

_— 57 . = —_—— —_— _—_—Z :1’...,N
at+§1“’aaj 005 T L gaég“LV?f ’
iv:'a}ﬁzo’

j:lamj

(1.2)
where 4@ = u/V is adimensional velocity, £ = ¢tV/L adimensional time, & =
z/L adimensional length, p = p/V? adimensional pressure and

_ LV

14

Re (1.3)
is called the Reynolds number. It is immediately clear that, when Reynolds
number tends to infinity, Navier-Stokes equations tend to Euler equations,
while when Reynolds number tends to zero, or at least when it is small
enough, the viscous term becomes preponderant.

Navier-Stokes (1.1) are the equations describing the motion of every
isotropic incompressible newtonian fluid since they are derived directly from
conservation laws without further assumptions. However, unless in very easy
situations like Poueisille’s motion or Couette’s motion, we do not know the
analytical solution of this problem. Existence and uniqueness of a solution of
the Cauchy problem for Navier-Stokes in a bounded domain has been proved
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in the two-dimensional case, and only existence and uniqueness for small
Reynolds initial numbers has been proved in the three-dimensional case [20].

Therefore several numerical procedures to solve these equations have been
developed. However, they have the same problems as analytical solutions:
they are highly unstable as Reynolds number becomes large. We call this
effect turbulence. In order to have more stable numerical solution, i.e. to
study the turbulent motion, the mesh size of the numerical grid need to be
smaller, typically 1072 times, than the size of the domain [40]. This means
10®Y grid points where N velocity components and pressure data need to be
stored; this is still far beyond the capacity of present-day computers and, in
addition, the number of arithmetic operations which would be required is so
large that the computing time would also be prohibitive.

Since engineers nevertheless need calculation methods, they resort to em-
pirical and semi-empirical methods. Empirical methods simply correlate ex-
perimental results and can therefore be used with confidence only for direct
interpolation of these results. Because there was and there is little hope of
solving the complete set of equations and because engineers are in any case
not interested in the details of the turbulent motion but only in its mean
flow, a statistical approach has been at first suggested by Osborne Reynolds
[39].

1.3 A phenomenological description

Most flows occurring in nature and engineering applications are turbulent.
The boundary layer in the earth’s atmosphere is turbulent; jet streams in the
upper troposphere are turbulent; cumulus clouds are in turbulent motion;
the water currents below the surface of the oceans are turbulent; the flow of
water in rivers and canals is turbulent; the wakes of ships, cars, submarines
and aircraft are in turbulent motion. In fluid dynamics laminar flow is an
exception, not the rule: we must have small dimensions and high viscosities
to encounter laminar flow. The flow of lubricating oil in a bearing is a typical
example.

In flows which are originally laminar, turbulence arises from instabili-
ties at large Reynolds numbers. Laminar pipe flows become turbulent at a
Reynolds number based on mean velocity and diameter in the neighborhood
of 2000 unless great care is taken to avoid creating small disturbances that
might induce transition from laminar to turbulent flow.
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On the other hand, turbulence cannot maintain itself but depends on its
environment to obtain energy. A common source of energy for turbulent ve-
locity fluctuations is shear in the mean flow; other sources, such as buoyancy,
exist too. Turbulent flows are generally shear flows; if turbulence arrives in
an environment where there is no shear or other maintenance mechanism, it
decays: the Reynolds number decreases and the flow tends to become lami-
nar again. The classic example is turbulence produced by a grid in uniform
flow in a wind tunnel.

Mathematically, the details of transition from laminar to turbulent flow
are rather poorly understood. Much of the theory of instabilities in laminar
flows is linearized theory, valid for very small disturbances; it cannot deal
with the large fluctuation levels in turbulent flow. On the other hand, almost
all the theory of turbulent flow is asymptotic theory, fairly accurate at very
high Reynolds numbers but inaccurate and incomplete for Reynolds numbers
at which turbulence cannot maintain itself.

Experiments have shown that transition is commonly initiated by a pri-
mary instability mechanism, which in simple cases is two-dimensional. The
primary instability produces secondary motions, which are generally three-
dimensional and become unstable themselves. A sequence of this nature gen-
erates intense localized three-dimensional disturbances which arise at random
positions at random times. These spots grow rapidly and merge with each
other when they become large and numerous to form a field of developed
turbulent flow. In other cases, turbulence originates from an instability that
causes vortices which subsequently become unstable: this phenomenon is
known as vortices cascade.

1.3.1 The features of turbulence

Everybody has some idea about the nature of a turbulent flow, however, it
has not a precise mathematical definition and it is very difficult to provide a
physical one. All we can do is to list some of the characteristics of turbulent
flows.

o One characteristic is the irregularity, or randomness. This makes a
deterministic approach to turbulence problems impossible; instead, we
rely on statistical methods.

o The diffusivity of turbulence, which causes rapid mixing and increased
rates of momentum, heat and mass transfer, is another important fea-
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ture of all turbulent flows. If a flow pattern looks random but does
not exhibit spreading of velocity fluctuations through the surrounding
fluid, it is surely not turbulent. The diffusivity of turbulence is the
single most important feature as far as applications are concerned: it
increases heat transfer rates in machinery of all kind, it is the source of
the resistance of flow in pipelines and it increases momentum transfer
between winds and ocean currents.

e Turbulent flows always occur at large Reynolds numbers. Turbu-
lence often originates as an instability of laminar flows if the Reynolds
number becomes too large. The instabilities are related to the inter-
action of viscous terms and nonlinear inertia terms in the equations
of motion. This interaction is very complex: the mathematics of non-
linear partial differential equations has not been developed to a point
where general solutions can be given. Randomness and nonlinearity
combine to make the equations of turbulence nearly intractable; tur-
bulence theory suffers from the absence of sufficiently powerful math-
ematical methods. This lack of tools makes all theoretical approaches
to problems in turbulence trial-and-error affairs.

e Turbulence is rotational. Turbulence is characterized by high level
of fluctuating vorticity. For this reason, vorticity dynamics play an
essential role in the description of turbulent flow.

e Turbulent flows are always dissipative. Viscous shear stresses perform
deformation work which increases the internal energy of the fluid at
the expense of kinetic energy of the turbulence. Turbulence needs a
continuous supply of energy to make up for these viscous losses. If no
energy is supplied, turbulence decays rapidly. Random motions, such as
acoustic noise (random sound waves), have insignificant viscous losses
and, therefore, are not turbulent.

e Turbulence is a continuum phenomenon, governed by the equations
of fluid mechanics. Even the smallest scale occurring in a turbulent
flow are ordinarily far larger than any molecular length scale.

e Turbulence is not a feature of fluids but of fluid flows. Most the dy-
namics of turbulence is the same in all fluids, whether they are liquids
or gases, if the Reynolds number is large enough; the major characteris-
tics of turbulent flows are not controlled by the molecular properties of
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the fluid in which the turbulence occurs. Since every flow is different, it
follows that every turbulent flow is different, even though all turbulent
flows have many characteristics in common.

1.4 Reynolds statistical approach

The statistical approach for the study of turbulence starts from the idea that
turbulent fluctuations of velocity have a smaller time and length scale than
the scale of velocity of practical interest to engineers. Therefore the idea
of Reynolds was to average Navier-Stokes equations (1.1) over a time scale
long compared with that of the turbulent motion. The resulting equations
describe the distribution of mean velocity and pressure in the flow and thus
the quantities of prime interest to the engineer. Unfortunately, the process
of averaging creates a new problem: now the equations no longer constitute
a closed system since they contain unknown terms representing the transport
of mean momentum by turbulent motion.

Formally, Reynolds equations (1.7) are obtained from Navier-Stokes by
considering the velocity u and the pressure p as a sum of a mean component,
in capital, and a turbulent component, indicated with a prime, i.e.

u; = U; + u} p=P+7p. (1.4)

We have to give a definition of mean component. This can be done by
setting a Cauchy problem and performing many physical experiments on
that problem; in this way we can measure velocity and pressure at every
time on every point and obtaining mean components by averaging over the
set of experimental data. By difference with instantaneous quantities we can
define turbulent quantities too. Therefore the mean of a mean quantity is
assumed to be the mean quantity itself and the mean of a turbulent quantity
1s zero. ;

However, if experimental data are not available and if we do not want
to base our theory on only potentially-existent data, we can revert to the
original idea of Reynolds: averaging over a long time scale. In this way the
mean quantities are defined as

1 t+T 1 “4T
Ues,f) = 7 fui(z;,t) dt P(a;,) = 7 [past)dt,  (15)
t t

where T has to be large compared with the time scale of the turbulent motion
and, if the flow is not stationary, small compared with the time scale of the
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mean flow. As usual, turbulent quantities are derived by difference using
(1.4). However, with this definition the average of a mean quantity is not the
mean quantity itself, unless the flow is stationary, and therefore the average
of a turbulent quantity is not zero. In any case, since 7' is small compared
with the time scale of the mean flow, we will assume that the average of a
turbulent quantity is zero and the average of a mean quantity is the quantity
itself. We will assume also that, using this definition of mean quantities, the
average of the time derivative of a mean quantity is the time derivative of
the mean quantity itself (this is almost true if T is small compared to the
mean flow).

1.5 Reynolds equations

Substituting decomposition (1.4) into Navier-Stokes equations (1.1), we ob-
tain

r N
o:.U; + Btu: + Z (UjajUi + Ujaju:» + u;ajUi + u;ajui) =
7=1
= -l&P—laip'—l—uAUi—l—yAu:-—l—fi 1=1,...,N (1.6)
ZajUj + Za_.,u; =0
\ =1 7=1

and, by averaging them over a set of experimental data or over a long time
scale, using average properties and indicating this operation with an overbar,
we obtain

N N
1
6tUi+ZUjajUi—ZajTij=——6,'P—|—1/AU1'—I—f,' 1=1,...,N
p

7j=1 7j=1
N
> 0;U; = 0.
7=1
(1.7)

The symbol 7;; = -W is the Reynolds stress tensor which is in perfect
analogy with the viscous stress tensor modeled by the assumption of newto-
nian fluid. This tensor contains six unknown quantities which are a priori
not related to the other four mean quantities (three mean velocity compo-
nents and the mean pressure). Therefore our problem has ten unknowns and
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only four equations® and a closure problem arises: the Reynolds stress tensor
needs to be modeled.

1.6 Boussinesq’s approximation

The oldest proposal for modeling the turbulent or Reynolds stress tensor is
a significant part of most turbulence models of practical use today: Boussi-
nesq’s (1877) eddy viscosity concept which assumes that, in analogy to the
viscous stresses in laminar flows, the turbulent stresses are proportional to
the mean velocity gradients. For general flow situations, this concept may
be expressed as

Ti; = v (0;U; + 0;U;), (1.8)

where v, is the turbulent eddy viscosity which, in contrast to the molecular
viscosity v, is not a fluid property but depends strongly on the state of
turbulence; v; may vary significantly from one point in the flow to another
and also from flow to flow. Therefore the introduction of equations (1.8)
alone does not constitute a turbulence model but only provides the frame-
work for constructing such a model: the main problem is now shifted to
determine the distribution of v,.

The eddy viscosity concept was conceived by presuming an analogy be-
tween the molecular motion, which leads to Stokes’ viscosity law in laminar
flow, and the turbulent motion. The turbulent eddies were thought of as
lumps of fluid which, like molecules, collide and exchange momentum. The
molecular viscosity is proportional to the average velocity and mean free path
of the molecules; accordingly the eddy viscosity is considered proportional to
a velocity characterizing the fluctuating motion and to a typical length of this
motion which Prandtl called “mixing length”. It has often been pointed out
[11, 4] that the analogy between molecular and turbulent motion cannot be
correct in principle because the turbulent eddies are not rigid bodies which
retain their identity and because the large eddies responsible for the momen-
tum transfer are not small compared with the flow domain, as required by
the kinetic gas theory. In spite of these objections, the eddy viscosity concept
has often been found to work well in practice, simply because v; as defined
by equations (1.8) can be determined to a good approximation in many flow

1Originally also the continuity equation for turbulent velocity existed, but we used it
to simplify the first N equations.
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situations. The main success of the eddy viscosity concept was the prediction
of two-dimensional thin shear layers.

However, even in categories of relatively simple flows, the eddy viscosity
concept sometimes breaks down. In wall jet and asymmetric wall shear lay-
ers, like flow in an annulus or channel flows with different wall roughness on
either side, regions exist where the stress tensor 7, component and the ve-
locity gradient 6,U, have opposite signs, leading to a negative eddy viscosity
which is only mathematically possible but not physically meaningful, since
in this case turbulence would not be dissipative, but contribute to the mean
motion. In flows where complexity is greater than in this shear layers, more
than one turbulent stress component is relevant. Equations (1.8) introduce
the eddy viscosity v as a scalar, that is the eddy viscosity is the same for
all stress components. This assumption of an isotropic eddy viscosity is a
simplification which is of limited realism in complex flows. Therefore, differ-
ent eddy viscosities are sometimes introduced for the turbulent momentum
transport in different directions; for example in large water bodies v; is often
prescribed differently for the horizontal and vertical transport. In spite of
all the shortcomings of the eddy viscosity concept mentioned above, it has
proved successful in many practical calculations and is still the basis of most
turbulence models in use today.

'1.6.1 Generalization of Boussinesq’s approximation

~ We derive here a generalization of relations (1.8), in the three-dimensional
case, showing that relations (1.8) come from a much more general relation
between the Reynolds stress tensor and the mean velocity deformation ten-
-~ sor Di; = 1/2(0,U; + 6;U;) with the only assumption that turbulence be
isotropic?.

Theorem 1 Let us assume that there ezist a linear relation between tensor
D and tensor 7, 75 = Y 1y Aiink Dh, then a principal ternd® for tensor D

15 principal for tensor T too.

Proof:

21t is exactly this assumption, which is generally not true, that is the main criticism to
Boussinesq’s approximation. '
3A principal terna for a tensor is a system of coordinates where a tensor is diagonal.
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In a principal terna for tensor D its off diagonal components are zero and its
relation with 7 becomes

3
Tii = O AijnnDap.
h=1
Inverting orientation of z; axis, the components of D’ in the new coordinates
system do not change since

BU;; _ 6(—U3) 6:1:3 _ _6(—-U3)

Ozy  Ozs Oz Oz

DII?,B = = D33.

The components of 7/ in the new coordinates system are
1 ! 1
Tog = —Ta3 T3 = —Ti13 T3z = T33.

Therefore from

3 3
!
Toz3 = Z Agzii Dy T23 = Z Az Dy
=1 =1
3 3
!
Tis = 3 AyaiDy; Tis = Y ArauDy;
=1 =1

it follows that 713 and 7,3 are zero in a principal terna for D. Inverting the
Ty axis we can easily show then 7y, is zero too.

O
The following theorem will assume that we are in a principal terna for

tensor D (and therefore for tensor 7) but, since both D and 7 are tensors,
their components change with the same law when changing coordinate system
and therefore the theorem holds for every coordinate system.

Theorem 2 If the flow is isotropic, in a principal terna the linear relation
between D and T can be reduced from nine to two coefficients. If the trace of
tensor D 1s zero (the continuity equation holds for the mean velocity), then
the linear relation becomes ezactly Boussinesq’s approzimation (1.8).

Proof: Let us write the relation between D and 7 in a principal terna using
Qrs = Arrss:

To2 = @21D11 + 22D + a3 D33 (1-9)

{ T11 = @11D11 + a12D25 + a13D33
T33 = a31D11 + a3D39 + a3z Das.
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Let us do the following permutation of axis:

I I
z] = T3 Th = 7 T3 = Ty

The new components of the two tensors in the new coordinate system are
i . I o
Ti1 = 733 Tog = T11 T33 = T22

Di; = Dy D3, = Dy D33 = Dy,
and therefore thanks to (1.9)

oo _ / I 7
Tog = T11 = allDzz + C7'12-D33 + a13D11
r_ _ / / 7
T3z = T22 = 021D22 + a22D33 + a,23.D11
r_ _ ] 7 1
Ti1 = Taz = @310y, + a32 D55 + azz Dy,

Using now the isotropy hypothesis and comparing the two systems,

Q11 = Q33 Q12 =431 @13 = A32
Q21 = Q13 Q22 = A11 Q23 = dj3

Q31 = G23 Q32 = Q21 - G33 = Qag,

we get only three independent coefficients. Doing an analogous axis permu-
tation
T = To Ty = T4 Ty = T3
and setting
A=ai=a3 =ap=a;3=ap= Q21
a1+ A ap+A _am+A
2 T2 T T T

from (1.9) we can obtain

T11 = —(A +2p) D11 — A(Dyy + Ds;3)
Tog = —(A + 2,[1,).D22 — A(-Dll + -D33) (110)
Taz = —(A + 2u) D33 — A(Dq1 + Day).

Now, if continuity equation for mean velocity holds (see (1.7)), the trace
of tensor D is zero and therefore relations (1.10) becomes Boussinesq’s ap-
proximation.

O
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1.6.2 Normal stresses correction

We can immediately see that equations (1.8) are not applicable to normal
stresses. In fact, considering 7 = j and summing over index j, we obtain
twice the opposite of turbulent kinetic energy

N__ N ‘
=Y ui? =37 =2, divU (1.11)

=1 =1

which is zero due to the continuity equation for the mean velocity. Therefore
turbulent kinetic energy is zero and there is no turbulence. To avoid such
paradox, we can modify (1.8) to

2
Tii = v (0;U; + 8;U;) — §k5ij, (1.12)

where k = %Efrzl u; is the turbulent kinetic energy (per unit mass) and §
is the Kronecker’s delta?. In this way normal stresses act like pressure forces
(i-e. they are perpendicular to the faces of a control volume) and since tur-
bulent energy k is a scalar quantity, it can be absorbed in the pressure term.
The static pressure is thus replaced as unknown quantity by the pressure
P+ %k The appearance of k does not necessitate its determination and only
the distribution of v, remains to be determined.

1.7 Eddy viscosity turbulence models

As we have seen in the previous section, using Boussinesq’s approximation
the only thing left to be determined is eddy viscosity coefficient v;. This
coefficient is not constant and depends on the flow; therefore a model where
1t is considered constant cannot be considered a turbulence model and its
only effect is to increase kinematic viscosity. The easiest turbulence model
1s to prescribe it using an algebraic formula usually involving the product of
a scale velocity and a mixing length. However, solutions of one or even two
differential equations involving turbulent quantities are used to determine its
value too.

%65 =1fori=j and 8;5=0 for i # 5.
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1.7.1 Zero equations models

The first model to describe the distribution of eddy viscosity was suggested
by Prandtl [36] in 1925 and is known as Prandt]l mixing length hypothesis.
Stimulated by kinetic gas theory, Prandtl assumed that v; is proportional to
the product of a mean fluctuating velocity V' (scale velocity) and a mixing
length I, (scale length). Considering shear layers with only one significant
turbulent stress uju}, where z; has the same direction as the main flow, and
with one velocity gradient 8,U;, he postulated that V is equal to the mean
velocity gradient times the mixing length. The mixing length is defined in
an experimental way as a not decreasing function of the distance from the
boundary; this function depends also on the type of flow. Many further
modifications have been done to this model to take into account buoyancy
effects and to give a general formula for the mixing length.

In 1942 Prandtl [37] proposed a simpler model applicable only to free
shear layers. In this model he assumed eddy viscosity to be constant over
any cross section of the layer, the mixing length to be proportional to the
layer width and the velocity scale to be proportional to the maximum velocity
difference across the layer, with a constant of proportionality depending on
the type of flow. This model is quite popular for the prediction of mixing
layers, jets and wakes. It works well when these flows are in a developed
state, but transitions from one type of free flow to another one are not well
predicted.

1.7.2 One equation models

In order to overcome the limitations of the mixing length hypothesis, turbu-
lence models were developed which account for the transport of turbulence
quantities by solving differential transport equations for them. An important
step in the development was to give up the direct link between the fluctu-
ating velocity scale and the mean velocity gradients and to determine this
scale from a transport equation.

If the velocity fluctuations have to be characterized by one scale, the
physically most meaningful scale is v/k, where k is the kinetic energy of the
turbulent motion (per unit mass)

ve = ¢Vl (1.13)

This formula is known as the Kolmogorov-Prandtl expression, where kinetic
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energy k is determined by solving a transport equation

Bk + 3" U,0;k = Za[( %)61-19]4— (1.14)

7=1 =1
N
+1y Z (B;Uj + BjU,-)B,-U,- — €.
2,7=1

Here ¢, is the turbulent energy dissipation, which can be approximated by
ch% /lm, while c,, c¢p and o} are empirical constants. This equation is
first derived exactly from Navier-Stokes equations and then approximated to
avoid including further unknowns.

1.7.3 Two equations models

The length scale [, characterizing the size of the large energy-containing
eddies is subject to transport processes in a similar manner as the energy k.
Other processes influencing the length scale are dissipation, which destroys
the small eddies and thus effectively increases the eddy size, and vortex
stretching connected with the energy cascade, which reduces the eddy size.
The balance of all these processes can be expressed in a transport equation
for [, which can then be used to calculate its distribution. The difficulties in
finding widely valid formulae for prescribing or calculating [, have stimulated
the use of such a length scale equation.

A length scale equation does not necessarily need the mixing length itself
as dependent variable; any combination of k and I, will suffice because k
is known from solving the energy equation (1.14). The most popular one is
called the k-e model and was suggested by Chou [8] involving the turbulent
energy dissipation € \

tet + ZU 3 i€ = Z 3 [( ‘Iit‘)ajﬁt]‘{‘
3= (1.15)
+c1€yt Z (8;U; + B:U;)8,U;: — chI: ,

J,z—l

where ¢, ¢z and o are empirical constants. This equation is derived exactly
from equations for the fluctuating vorticity [28] and then drastically modeled
to avoid introducing further unknowns.
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1.8 Large eddy simulation models

The main difference between large eddy simulation (LES) turbulence models
and models using Reynolds equations is the averaging procedure performed
on Navier-Stokes equations. The LES technique does not involve the use
of experimental averages or time scale averages as a first step in obtaining
equations for the mean flow. Rather, a space filtering operation involving

Fourier transforms is applied to the equations of motion. We will not go into |
deep details which can be found in Yeo [43] or Aldama [1].

1.8.1 The filtering technique

Let f(z,t) be an instantaneous variable (velocity or pressure) which appears
in Navier-Stokes equations (1.1). Its corresponding filtered variable is defined
by the convolution integral

F(o,t)=F(e,t)= [H(z - O)f(¢1)de (1.16)

where H is a suitably defined filter function. The effect of the filtering
operation becomes clear by taking the Fourier transform of expression (1.16).
By definition, the space Fourier transform of f is given by

Fb,t) = [ fla,t)e = do (1.17)

where h represent the wave number vector and i = y/—1. Thus, by the
convolution theorem, we get

F(h,t) = H(R)F(h,1). (1.18)

If H = 0 for |hi] > hc, where h¢ is a cut-off wave number, all the high
wave number components of f are filtered out by convoluting if with H.
A filter with such characteristics is denoted by Holloway [19] an ideal low
pass filter. However, if the filter function in wave number space H rapidly
falls off, a cut-off wave number can also be defined for all practical purposes.
Most commonly box filters and Gaussian filters have also been considered by
Ferzinger [14].
We can represent any filter with the following expression

H(z) = [ H(e) (1.19)
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where H;(z;) is a one-dimensional filter. From (1.17) and (1.19) the Fourier
transform of H can be written as

(k) = T Fy(h) (1.20)

where Hj(k;) represent the Fourier transform of H;(z;) with respect to z;
and is defined by

Bi(h;) = Aﬂj(zj)e—ihf*i dz; j=1,...,N. (1.21)

If an ideal low pass filter is used

Hj(z;) = Siii;_j (1.22)
B ={y o 5%, (129
while for the box filter we have
we)={3 IS (29
Kj(h;) = Si;hi?li (1.25)

and for the Gaussian filter

Gj(z;) = \/%exp (- 7%) (1.26)

— A2h?
G;(h;) = exp (f 471). (1.27)
In expressions (1.22)-(1.27) X represents a characteristic filter width and in
(1.26) and (1.27) + is a parameter usually set equal to 6 for reasons explained
later on. It can be observed that a clear cut-off wave number equal to 27/
can be defined for the ideal low pass filter. In contrast, the Fourier transform
of the box filter is a dumped sinusoid and spurious amplitude reversals are
produced by its use in Fourier space. Finally, the Fourier transform of a
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Gaussian filter is also Gaussian and for all practical purposes it is essentially
contained in the range [—27/A, 27 /]].

Based on the previous discussion, we conclude that a filtering opera-
tion such as the one defined by (1.16) tends to eliminate from the filtered
variables the rapidly space-fluctuating components, usually characterized as
turbulence. It can also be shown that the filter operator commute with the
spatial and temporal derivatives [25]. Thus, the filtered Navier-Stokes equa-
tions are

N
1
BtUi-anjuiuj=—;5iP+I/AU+f,~ 1=1,...,N

[ (1.28)
Y Oju; =0,
Jj=1
The instantaneous velocity field can be decomposed as usual as
u; = U; + ui (129)

where u] represents the high wave number component of the velocity field.
In LES literature, U is called the Large Scale (LS) velocity and ' the Sub
Grid Scale (SGS) velocity. When this decomposition is used, the following
result is obtained .

ww; = U;U; + Ul + wlU; + ulnl. (1.30)

For a general space filtering operation the classical Reynolds postulate U; =
U; does not apply and therefore relation (1.30) cannot be further simplified
and system (1.28) results as an integro-differential not closed systems of
equations.

1.8.2 Leonard model
In 1974 Leonard [25] proposed that the LS advective term U;U; be expanded

in terms of a Taylor series inside the convolution integral that defines its
filtered value. The resulting integrals do not converge for the ideal low pass
filter; however, for the Gaussian filter Leonard approximation is

AZ
U,'Uj =U;U; + HA(U{U]') + O()\4) (1.31)




28 CHAPTER 1. TURBULENCE

The choice of v is arbitrary, but (1.31) coincides with the box filter approxi-
mation when 4 = 6. Because U;U; is already a smooth function in the scale
of the filter width, its expansion in terms of a Taylor series seems to be justi-
fied. Through numerical experimentation Kwak at al. [22] have shown that
for isotropic Cartesian meshes it is appropriate to take ) equal to twice the
computational grid size. This result has significant theoretical appeal, as the
size of the filter width coincides with the characteristic length scale of the
smallest resolvable eddies.

However, the problem with Leonard’s approximation is that the LS ad-
vective terms appears inside a derivative in the filtered governing equations
(1.28); therefore a system of third-order differential equations results. This
fact raises questions about the well-posedness and, from practical standpoint,
causes problems at the boundary due to the lack of boundary conditions.

1.8.3 Clark et al.’s model

In 1977 Clark et al. [9] pursued the idea of expanding both U and v’ in
a Taylor series in the convolution integral that defines the cross term m
However, the use of Taylor series expansion of u’ is not rigorous, since the
turbulent component v’ is highly fluctuating in the scale of the filter width.

To overcome this problem, Aldama noticed that formula (1.31) for Leo-
nard’s approximation can be obtained using the Fourier transform of the
Gaussian filter (1.27) and expanding it in Taylor series as

2
G(h)=1— i—hz L o0, (1.32)
7
substituting it into (1.18)
e — 22 —
U;U;(h) = U;U; — 4—h2Uin(h) + 0\ (1.33)
v

and finally using the property of the Fourier transform
—hiUUj(h) = [BO(U:Uy)|(R) (1.34)

and applying the inverse Fourier transform to reduce (1.33) to (1.31).
In the same way we can obtain an approximation of the cross terms Usuj

and u.U;. Their Fourier transform can be written as

Twii(h) = G(h) [ Tilh - £)(¢) de. (1.35)
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Since G(h) # 0 for every h, using (1.18) and (1.29) we obtain

ey |1l
206 = [ 5 1} Ui(e) (1.36)

Substituting it into (1.35) and expanding G(h) and G(¢) in Taylor series
gives

Ta(h) = [Gi0h = T30 36 + 00 de (1.37)
In analogy to (1.34) .
—&T;(£) = [B:8U;](¢), (1.38)

substituting (1.38) into (1.37) and taking the inverse Fourier transform gives
a formal series approximation of Uu}

AZ
Uai} = — - UiAU; + O(N%), (1.39)
17

I.
7
This equation is identical to the approximation obtained by Clark at al.. Ac-
cording to Aldama [1] the convergence of the series generating the Leonard
approximation and the approximation of the cross terms cannot be proved be-
cause convergence tests are inconclusive in these cases. Nevertheless, proving
convergence is not needed for those approximations to be useful. Demon-
strating their asymptotic nature would suffice and, in fact, would be even
better than establishing their convergence. Indeed, in the approximation
of functions, truncated asymptotic series are known to give better numeri-
cal approximation than truncated convergent series in a wide variety of cases
3, 34], even when the former diverge. But the most important implication of
such a proof would be that a formal perturbation theory can be built around
asymptotic approximation. As a consequence, a measure of the size of the
error made in truncating asymptotic series can be given. Aldama [1, Section
3 and 4] gives a proof of the asymptotic nature of the series generating the
Leonard approximation and also a proof for the case of the approximation of
the cross terms.

The main advantage of this treatment is that now combining (1.39) and
(1.31) together we obtain

AZ N _
ﬂiTj = Uin + -2—; lz: 61U,;61Uj + 0(/\4) + 'u.:'u.;, (140)
=1
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where the second order derivatives no longer appear. Therefore the space
filtered flow equations, given a proper closure model for uju}, are second-
order differential equations.

1.8.4 Yeo and Bedford’s model
Following an approach of Yeo and Bedford, Cantekin and Westerink [7],

expanded the SGS terms ulu’ in the same way as the cross terms. In analogy
with (1.35) we get

(k) = C(k) [ @(h - €1(¢) de, (L.41)

using (1.36) and expanding the Fourier transform of Gaussian filters in Taylor
series we obtain

) = [ (-7 4 000) B - T e (142

and therefore the series approximation of the SGS terms is
4 N

A
i= 5 2 (810.U:)(0,0U;) + O()®). (1.43)
167 =1

!
uu

We note that the leading terms in this approximation are of O(A*) and will
therefore be neglected in the flow equations (1.28). A similar approximation
to the SGS terms was first obtained by Yeo and Bedford [44, 2]. Using this
model, no closure model is required but the drawback is that we formally
neglect the contribution of the SGS terms, which are considered as one of
the main source of turbulent effects.

Space filtered Navier-Stokes (SF) equations are therefore

( N .
o.U; + Z U,-B,—Ui = —%B;P + vAU;+
= N 22
< - Z Bj[—alU,-BIUJ] + f; 1=1,...,N (1.44)
3l=1 27
N
>.0;U; =0,

\ =1
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which, together with boundary conditions Ujpn = 0 and initial conditions
Uje=o= Uy give the space filtered Navier-Stokes model. Clearly, the initial
datum is required to satisfy

N
> 05U =0 Usjon = 0- (1.45)

7=1

We will study these equations in Chapter 3, where we will give a global
existence and uniqueness theorem for the analytical solution provided initial
data are regular and small enough. In Chapter 5 we will study the numerical
performance of this model.

1.8.5 Smagorinsky’s model

The most popular form of closure model for modeling u/u’ is the Smagorin-

sky’s model [42]
1

—ufu} = M| D Dy; — 3 R8s, (1.46)
where D is the averaged velocity deformation tensor and % the turbulent
kinetic energy. This model has been used by Findikakis and Street [15]
to simulate uniform density and thermally stratified steady-state turbulent
flow in a lid driven cavity, by Clark at al. [9] to simulate the decay of
homogeneous grid-generated turbulence, by Dakhoul and Debford [12] to
simulate the quasi-turbulence associated with the one-dimensional Burgers’
equation. However many other authors simply approximate the term U,
with U;U; plus 2 Smagorinsky’s model for the remaining terms [35, 45].

We will call SF model with Smagorinsky’s closure eddy viscosity space
filtered (EVSF) model

N 1 N
OU: + 3. UidsU: =~ 6P +3_ 65 |(v+ CIIVU|™)0,07] +

=1 5=1

A2
4 —Z aj[aazUiazUj:' + f; 1= 1,...,N (1.47)

and we will show in Chapter 4 a global existence and uniqueness theorem
for its analytical solution and in Chapter 5 some numerical approximation
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results. The equations obtained by the Smagorinsky’s model dropping the
LS advective terms will be simply called eddy viscosity (EV) model and we
will provide numerical solutions for it in Chapter 5, while existence and
uniqueness theorem for its analytical solution can be found in [23].



Chapter 2

k-e and ¢-0 models

Although the k-e two-equations turbulence model is the most widely used
turbulence model by engineers and scientists, its mathematical properties
remains to be clarified. There are a lot of numerical and physical experiments
about the k-€ model but very few mathematical studies. In this chapter
we are going to introduce another equivalent model, the -6 , and we are
going to show positivity, existence and uniqueness of its analytical solution
following a work by Mohammadi [32] on compressible flows. We then propose
a numerical approximation of ¢-§ model which leads to a stable positive
solution for both the spatially discretized problem (semidiscretization) and
for the temporal-spatially discretized problem (total discretization).

2.1 Construction of ¢-f model

The -6 model is built from k-e¢ model changing the variables in such a
way that in the new two differential equations we eliminate dissipative terms
which depends with positive powers on the other equation’s variable. This
is clearly done to avoid having dissipative terms such as the —¢; in equation
(1.14) which is the term which causes the most critical numerical problems.

33
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We start from k-e model (1.14) (1.15) in its version for compressible fluids

¢ k2
Vt—Cue_
t
dk—ia-[( + 2 )05k] + B 2hdivy -
q % —j=1 il\Y o) e 3 t (2.1)
N 2
vy 2¢ . €;
— . 2\ 5. 224 et
\dtet ;BJ[(U-i—U)BJEt}—i—clkF 3c“€t wwU czk

where ¢1=¢1¢¢,~0.1296, co=c2¢~1.92, ¢,~0.09, ox~1, 0.~1.3 and

N
7=1
ad 2
F=Y" (8:U; + 6;U;)0;U; — 5(div U2, (2.3)

ij=1
The last term of (2.2) is called convective term, the second term of dif-
ferential equations (2.1) diffusive term, the third production term, the fourth
compressibility term and the fifth dissipative term.
We now introduce 6 and ¢ variables using the fact that k& and e, for
physical reasons (they are an energy and a dissipation), should always be
strictly positive in a turbulent flow. We set

k €
0=— = £ 24
- P =13 (24)
so that
ol 1
- 02 TP
Let us write now differential equations (2.1) in the new variables
1 2 1 X 2 X
- Oip — 00 — —= > U;0;0—— U060 =
922 tP P t 922 ; iY5iP 03 ; 773
. 1 21 1
== lefk -l— C“F% — gﬁdlv U — m, (25)

L o S 88— S Ut — 2 S ;6036
- P — tV— = 03P — 22~ OV =
632 64 632 et =3 64 = =3




2.1. CONSTRUCTION OF -8 MODEL 35

1
=Diffe + o F— -~ 22— divl — ¢y——. (2.6)
C

where terms Diffy and Diff, are the diffusive terms of k-¢ model expressed
through the new variables ¢ and 6.

Multiplying equation (2.6) by 6, subtracting the result from equation
(2.5) and multiplying it by 63p we obtain the f-equation

4,8 = Diffy + (c, — o1 )F6° + ge (C_l - 1) dvU+(c;—1).  (27)
Cu

Subtracting three times equation (2.5) from twice equation (2.6) multiplied
by 6 and multiplying the result by §2¢? we obtain the p-equation

dip = Diff, + (2¢; — 3¢,)Flyp + gcp (3 - 2?) divl +(3-2)%.  (28)
)

Diffusive terms Diffy and Diff,, are

N
Diffg = Z 0;(v + covt )l + Gy

7j=1
N

Diff, = Z O;i(v + CoVt )00 + G,
j=1

Gy = (M _ Cg>l/tA6 _ (M _ Cg> %96 ve+

Or0¢ OO, g

1 — 7o, —oc [0
_(Ek__a_cg)ﬁvg.v(p_i_ 9% 0 I/t[—Acp-l-

k0. 0 oroe Ly

6

1
—3—2V<p . Vgo] — 6v—
©

0

3o — 20, 210 — 20

G, = (L_U _ %)VtA@ _ <~_U“U’° _ C«:) ﬂch - V+
OkO OkOe

30 — 204
—(—U—ﬂ—c¢)%V¢-Vgﬂ+6

1
V8-V8—-2v—Voy- Vo
®

O — O¢

Ut%Aa

OLO, Or0¢

+650'k _4061/,5-(6-

OrO, 0

92
Note that these diffusive terms are more general than those considered
by Mohammadi in [32], where the author takes o) — oe, neglects the fifth

1
V6.V - 2=V Ve +6r2v6. V.
®
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term of G, and takes » = 0. While the first two hypothesis can hold, consid-
ering kinematic viscosity to be zero can radically change the mathematical
nature of the problem. In fact to show existence and uniqueness, Moham-
madi turns again to v > 0, even if in [33, Appendix A5] Lewandowski shows
existence, positivity and uniqueness theorems even for v = 0 but only in the
incompressible case.

In [32] Mohammadi says that constants cg and ¢, need to be numerically
tuned, but we stress the fact that in any case there is not a value of ¢, c,,
v, o and o which let Gy and G, vanish. This and the former observation
imply that the -6 model we are going to use is not the k- model in other
variables, but a modeled version which assumes that Diffy and Diff,, are like
diffusive terms in k-€ model and through use of ¢y and ¢, tries to have Gg=0
and G,~0.

We decided to follow Mohammadi and using ¢-f model instead of k-¢
model because the former has much better numerical properties than the
latter. Especially interesting are the positivity numerical results for -6
model which are much more difficult to obtain for the k-¢ model. From an
analytical point of view, positivity for ¢- model is proven in this chapter
thanks to Mohammadi while some partial positivity results, applicable only
when the solution is very regular, for k-¢ model are in [32, Section II.3], [33,
Chapter 5, section 2.3] and [33, Chapter 9, section 2].

2.2 Gronwall lemmae
We giv;e here some versions of the Gronwall lemma, which will be used many

times in this work. A proof of these lemmae can be found in [38, Chapter 1,
Section 4].

Lemma 1 (Gronwall) Let G(t) be a non-decreasing function and (t) and
p(t) be non-negative functions. If

W(1) < G(t) + [alshh(s) ds

then

P(t) < G(t) exp [/Ota(s) ds].
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Observation 1 Gronwall lemma can also be formulated as: let g(t), a(t)
and (t) be non-negative functions. If

Onp(t) < g(t) + a(t)(t)
then

v(0) < [ [(s)ds + (0] exp | [la(s) as]

Lemma 2 (Discrete Gronwall) Let K,, be a non-negative sequence and o
a constant not smaller than . If

n—-1 n-1
Yn<a+d p+Y Kapy VYn>1,
=0

8=0

then
1 <ol + Ky) + po

n-1 n—2 n-1
Ya <o [+ K)+ > p IT 0+ K:)+pos
s=0 8=0 r=s+1

Observation 2 Ifin discrete Gronwall lemma 2 succession p,, is non-negative,
then the thesis can be changed in

n-1 n—1
Pn < (a+2p,) exP<ZK,)-
8=0 s=0

2.3 Solution of - model

In this section we are going to follow Mohammadi [32] and show that if
Ue L=(0,T;L>(Q)), divU € L*(0,T; L=(Q)),
F e L*(0,T; L=(Q)) (2.9)
then there exist a non-negative unique solution of ¢-8 reduced model (2.13)
in L*(0,T; L°(Q) N H{(Q)) N L2(0,T; H*(Q)). This result will be used to
prove that if
Ue€L*0,T;L*(Q)), divU e L>(0,T;L>(Q)),
F € L™(0,T; L*=(Q)) (2.10)

then there exist in L*(0,T; L>(Q)) N L*(0,T; H*(Q)) a positive unique so-
lution of -8 problem (2.11).
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2.3.1 The ¢-0 problem
The -0 problem is stated as follows

{ I/t _ ec_:;
N
df =Y 80;((v + cov)8;6] — csF6? + c,fdiv U + g
7=1
) VeeQ Vie(o,T]

N
dip = Z aj[(V + C<p1/t)6j<,0] — csF'0p + crpdivU — Cs%

7=1
Vzel Vie|0,T)
O1i=0=00 Pjt=0= o Vzel
| Bsn=0a @pa=b Viec[0,T]

(2.11)
with Q a bounded domain of RY 89 its boundary, U a given function, F a
given non-negative function, a, b, v, cs, c4, Cs, Cs, C7 and cg positive constants,
bo =6(z) > a and 0 < £ < po(z) < b.

2.3.2 The reduced ¢-6 model
In order to start with a simpler model, we shall modify model (2.11) by

taking v; equal to zero and take, only for the sake of simplicity, zero Dirichelet
boundary conditions.
dtG—-uAﬁz—c3F02+c49diVU+c5 Vze Vtel0,T]
dip — vAp = —c6F0<p+C7<pdivU—c8% VzeQ Viel0,T]

(2.12)
Ole=0="00 @jt=0= 100 Vze
0]39——— 0 QO,aQ-: 0 4 te [O, T]
f-equation will be modified as
dif — vAf = —c3F0|0| + c40divU + cs (2.13)

where obviously a positive solution of (2.13) is also a solution of f-equation
in (2.12).

Lemma 3 (A priori estimates) If §, ¢ L=(Q) 0 Hy(Q), if (2.9) holds
and if a solution 6 of (2.18) ezists, then § L=(0,T; L=(2) n HY(Q)) n
HY0,T; L3(Q)). :
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Proof: Let us multiply (2.13) by 6 and integrate over )
%at“a||§z+u||vongz = [[-es P16+ cstdiv U+ s8] dx— [o(vo)dx. (2.14)

Integrating by parts the last term, using Holder’s and Young’s inequalities
and dropping the second and the third term, we find

BullBlZa < [es + (2c4 + 1)||div Ul 18] + e
So, using Gronwall lemma 1,
16(8)1% < [es + 160l | exp [eslUT + (264 + 1)) civ Ullzs o)

and this implies that 6 € L°°(0,T; L3(Q)). In addition, integrating (2.14) in
time, we have

2 1 2 1 T 21 q-
I V8lEaaey < eslOllaquey + 510l + (e 5) [ [ldiver|axar
and it follows that V8 € L2(0;T; L*(Q)) and therefore 8 € L*0,T; H ().
Mohammadi also observes that if 65 € L?(Q) we can multiply (2.13) by
|0|P~26 and prove that 6 € L*(0, T; LP(§2)) for every p € [1, +o0].

We now want to estimate 9;6 multiplying (2.13) by 0:f and integrating
in space and time

/ot/fz'atelzdx dt + /OtfnU (V)30 dx dt + v /Ot/nve . V6,0 dxdt =

i t t
s //Fﬁlelatﬁdxdt+c4//6div U6 dxdt + cs //Btedxdt.
0JQ 0/ 0 00

We note that

g _v 245 — ¥ 2
U/O/QVG-Vatﬁdxdt = /n;ve(t)] dx 2 /flw"' d,

t
/0 /ﬂU(VG)Btdedt < [T om0y | V6 22221861 22209,

! /Ot/nFelelate dx dt

< ”F”Lz(L“)HHHzW(H)HatGHH(L?),
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t
/ /0 div UB,0 dx dt
o/

< ”atGHLz(Lz)HdiV UHL2(L°°)H€”L°°(L2)

t
//ato dxdtl < QT38| 22 z2)
o/a
and this means that 8,6 € L2(0,T; L*(Q)) and V8 € L*=(0,T; L*(2)).

O

Theorem 3 (Existence, uniqueness and positivity) If 6o € L°NH()
and if (2.9) holds then problem (2.13) has a unigue not negative solution
6 € L=(0,T; L>=()) N L*(0, T; H3(2)).

Proof: Thanks to the a priori estimates lemma 3, the classical Faedo-Galerkin
method [27] can be used to obtain the existence of 6.

We now write § = 87 — 6~, where % = max(0,6) and §~ = max (0, —6)
and therefore §; = 0. We multiply (2.13) by —0~ and integrate in space

1 -
Ol07 12 + vI[VE ]Iz =

= —c3 ‘/QJJ'(G_)3 dx — (% + 04) /n(e_)zdivU dx — ¢s /90— dx

and dropping the second term on the left side and the first and third term
on the right side and using Gronwall lemma we get

1671122 < 1165 1122 exp [(1 + 2¢4) | div U |2 (2]

which means that 8, which is zero at starting time, will always be zero and
thus non-negativity is proven.

Let now suppose that two positive solutions vy and v, in L?(0,T; Hy(f))
exist and subtract their differential equations

Oyw + UVw — vAw = —csFw(vy + v3) + cqawdivU
where w = v; — v,. Multiplying by w and integrating in space we obtain

1 1
5Olwllze+ vVl = —c%sz(vl +v;) dx + (c4 + 5) szdidex

and therefore, using Gronwall lemma 1 and dropping the second term on left
side and the first term on right side, we get w = 0. '
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O

Theorem 4 (Maximum principle) If § € C*([0,T]; C*(Q) N Cco(Q)), if

wnitial and boundary conditions are positive, then 6 is always positive.

Proof: If § has this regularity then it is a classical solution of differential
equation. We take the minimum of 6 at every fixed time and suppose that
there is a time when it goes to zero. Therefore at the first time that this
happens

66 >0 A6 <0 Vé=0

and differential equation in this point at this time becomes
Ozate—VA9:C5>0,

which is a contradiction.

O

The p-equation

Under the same hypothesis on U and F, we can prove, in the same way as
we have done for #-equation, that there exist a non-negative unique solution

¢ € L>(0,T; Hy(Q2)) N L>=(0, T; L=()).

2.3.3 The real - system

Theorem 5 Assume that (2.10) holds, that divU =0, that 8, € L°(f) and
that o€ L>($2). Then problem (2.11) has a unique solution in £°0, T;L>(R))
NL*(0,T; H(Q)) such that 6 is greater than a and there is X > 0, depending
only on domain Q and T, F and a, such that ¢ is limited from below by
¢e=*T and from above by b.

Proof: We introduce the following perturbed system

00 + UV, — V(Hc (e, 0e)VOe) = —caF|0.|6. + cs

at‘Pe + UV, — V(He(gea ‘PE)V‘PE) = —(,DE(CSHEF + CSKE(HS))

Oeji=o =00 2 a, &£ < Peppp = 0o < B, (2.15)
9e[an = a, Pejan = b

K(f)=(e+ )72 HAf,g)=v+(+ f2") 5.
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Let (67, ¢7) be the sequence of approximate solutions of perturbed systems

(2.15) obtained with the Faedo-Galerkin method; thanks to the L>(0,T;L>(R)
NL*(0,T; H'(R)) bounds on (67, ¢") and the L*(0,T; H1()) bounds on
(087, 8,07), (67, ¢7) is weakly compact in L*(0,T; H'(2)) and strongly com-
pact in LP(0,T; LP(Q2)) for any p>2. Therefore the sequence converge to
(6, ¢c) almost everywhere as n — oo, and, thanks to the other a priori
bounds, we can pass to the limit as € — 0 to (8,0).

A more detailed proof can be found in [32].

O

2.4 Semidiscretization

Taking inspiration from the results of Mohammadi that we presented in the
previous section, we present here a spatial discretization of -6 model (2.11)
by means of finite elements and provide conditions for stability and positivity.

Let us introduce a triangulation 74 of domain O composed of elements K.

Definition 1 Define px as the mazimum diameter of the spheres contained
wn the element K and hy the minimum of the diameter of the spheres con-
taining the element K. h is the largest hy.

Definition 2 The triangulation Th 15 regular if and only if there 4s a o > 1
such that for every h > 0 and for every element K € Th

he
PK

Definition 3 Define X¥ as the space of triangular finite elements, composed
of every function in C°(Q) such that its restriction to element K is a poly-
nomial of degree k. Define Vi = XF N H!.

Thanks to definition 3 for every 6 € H3(Q) we have

eirelgh “0 - gh”Hl(Q) — 0 when A —0.

Let 6, and @ be in C*([0, T]; V4) and let {¢;,7 =1,..., N} be a basis

for the vector space V}, so that we can set

et = X HOH) o) =D i@ (210
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Now we want to find ), and @y, which, given initial data 0o, > o > 0 and
wo,n = a > 0, satisfy in distributional sense

r . Cu
"= Onion
d.fy, = Z O[(v + cove)O101] — c3F G2 + c4pdivU + cs
=1

VzeQ Vtel0,T)
3 : Ph
dipr = Z O[(v + covt)01pn] — ce FOnon + crppdivlU — csa
=1
VeeQ Viel0,T]
0, t=0" bo,n Ph|e=0= POh Vze
=0 "Dhlanzo vitel0,T]

A lan
(2.17)

where boundary Dirichelet conditions are taken to be zero only for sake of

simplicity. If we multiply (2.17) by ¢;, use (2.16) and integrate over Q, we
obtain

Ny N,
3. 06, [obedet 3.0 [U-(Védidet

+:§ej/n(,, ececu)wj Vidx = —c3/F<Ze ¢]) ¢y dx+

Np
6; |divUd;d; d ;d Yi=1,...,N 2.18
+C4_.,'=Z]_ J/nlv Pip x—I—cs/nqS x 7 3 ( )

Ny
3 0 [ 30, JU-(V65)s et

7=1
Ny
plu
+J~§1(’D]/ﬂ(lj+9 )V¢J V¢, dx =

N, Ny, N,
= —¢Cg AF (Z 9j¢j> <Z (pj(ﬁj) ¢;dx + ¢ Z 2 Adlv U(}Sj(}si dx+
7=1 7=1 7=1

Z] 1‘10.745.7 o ‘
+8/ €¢J Vi=1,..., N (2.19)
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Nh. Nh.
> 0;(0)d; =bop D i(0)d; = pon
7=1 7=1

which is a system of autonomous® ordinary differential equations with pos-
itive initial data. Since its dependence upon 6; and ¢, is Lipschitz in a
neighbourhood of the initial positive data, then we have a unique positive
solution 8, and @y in C*([0,1); V&), where t; is either T or it is the time
when 6 or @y goes to zero or to infinity. We are now going to show that
0y and ¢, are bounded and are strictly larger than a positive constant and
therefore #; must be T'.

Theorem 6 (Positivity) Under the hypothesis that

divU € L=(0,T; L*(Q2)) F e L®(0,T; L=(Q)) (2.20)
there 1s A > 0 such that

On(t) > ae™™  pu(t) > ae™™ vt € [0,%1).

Proof: Let us remind that ¢ < min(6on, por) and let us introduce np =
0y — ae* and, as usual, 7, = 7 —7n;, . Now 7, satisfies in a distributional
sense

CoCpu

)017]};] + ade ™™ — c3 Fypby+

N
Omp + U -V, = Zaz[(l/ +3
=1 hPh

—c3Frae™ + c,div Unp + cadiv Uae™ + cs, (2.21)
and multiplying (2.21) by —n; and integrating over ) we get

1 1
§6t||n;||§2 < §/Qdiv U(ny)?dx — A éxe_“n; dx + c3 /QFGhae”Atn,I dx+

—c3 /‘)Fﬂh(n; Y dx + ¢4 /Qdiv U(n;)? dx — ¢4 /div Uae ™y dx
Q
Bellmi 22 < [(1+2¢4)|div Ullzes + 2¢5|| Fllze= (1Bl | l1mi 122+

+ /7;,:2046_“( — A+ csFlp — cpdivU) dx.
)

1 Autonomous means that the differential equation depends on time only through the
time derivatives and the unknown; it does not explicitly depends on time. This fact has
as direct consequence the fact that every solution does not depend on its starting time.
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IfA > caf| F||poo(roo) ||On| Lo (£oo)+cal|div U|| peo(r.), then using Gronwall lemma,
1 we prove that

i @1z < 75 (0)][32-
+ €Xp [(1 + 2C4)”diV U”Ll(Loo) + 2c3”F”L2(L°°)th“L'é’(Lm)}-

An analogous inequality can be proven for ¢, using the fact that now
fr > ae™*1. We observe that 6y is always in L=(0,T; L®(f)) since it is a
discrete function, even when the norm depends on h.

O
Theorem 7 (Stability) If (2.20) holds, then our semidiscrete solution is
in L=(0,T; L3(Q))NL*(0,T; H(R)) with an estimate which does not depend

on h.

Proof: Let us multiply equation (2.18) by 6, and sum over j

SO0 + [U-Venbuaxt [+ 22 )98, 90,0~
2 L a Orion

:——c;,/ﬂFGidx-l—c4/9divU¢9,21dx+c5/09hdx

OcllOnllzz + 2v[IVOnllze < (2c4 +1)div Ullze=[|6n]1Z2 + e5]18nl1 3z + e/

which proves our thesis thanks to Gronwall lemma 1.
To show our thesis for ¢, the procedure is exactly the same, with the
only difference that the last term can be dropped in the inequality.

O

Corollary 1 Thanks to stability theorem 7, 0, and @y, cannot go to infinity
in t; and therefore either t1 = T or 8y or ¢y goes to zero.

Corollary 2 We must observe here that the constant ) in positivity theorem
6 depends on h and on t;. But for every chosen t; there ezists a A and
therefore Op(t1,z) > 0 and @p(ty,z) > 0. This means that @y and 8y cannot
go to zero and therefore t1 = T and our solution s in C*([0,T); V3).
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2.5 Total discretization

In this section we provide a spatial and temporal discretization of ¢-6 model
whose solution, under some conditions on time step At, is positive and stable.

We want now to find functions §°*! and ¢™*! in V; such that, given 67
and ¢ in V}, they satisfy, for every indexz=1,..., N4

CoCpu

3 [qpfp oo vosmars o1 ) ouman

+es /QF(t“+1)0"¢,-¢,~ dx — ey [div U(E™)g56: dx] gt =

Nhl

- 2 = /n¢,-¢,» dxf + 5 /ﬂqs,» dx (2.22)

>v¢,- N ¢ dxct

g: [i/ﬂ%@ dx +/QU(t”+1)'V¢j¢i dx +/Q<V + 9:(:71

s [P0 61— o e U+ )y ot
Q

1 h. n+l _ o 1 i n
+os [t dx| ] Y n [#i#: axer (2.23)

0°=6r  ¢©° = von.

Such a solution surely exists when matrices Ag and A,, which multiply
6"t! and ™! in (2.22) and (2.23), are positive definite and this happens
when

(AT > (% e )divU(E) = coF ()6 (2.24)
1 1
(A1)~ > (5 + 67) div U(#"1) — s F(t™11)6" — Ca g (2.25)

Therefore, we can drop terms containing 6™ in (2.24) and (2.25) and simply
ask

-1

1
At < |||div U||Lm(Lm)<ma.x(c4,C7) + —)} , (2.26)

2

which is always satisfied if the fluid is incompressible.
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Theorem 8 (Positivity) For fized h and At, a solution 6™, ™1 of
(2.22) and (2.23) is always strictly positive provided that 6™ and o™ are
strictly positive and that (2.20) and (2.26) hold.

Proof: Since 6" and ¢" are strictly positive and they are discrete functions,
then there is a A > 0 such that for every A > A we have? 6™ > e *" and
@™ > €e™™". Let us introduce 7™+ = §"t! — (e~ """ which must satisfy, in
a distributional sense,

T U vt - v [(” + g n)v"n+lJ B

1 s
= —g (""" 4 cudiv U™ ™ 4 cs + A_t —€de” At

—ca F(1" )™ gm 4 cydiv U(£7 ) (2.27)

where £° is a time in [¢",t"*!]. If we split n™! = (™) — (p™*1)~ and
multiply (2.27) by —(n™*')~ we obtain the following inequality

7)1 < (e + 3) fav UEm) Pe— [y e

+At§e"\t”+lf [ = X+ )" — cydiv U (™) (1) dx

o

and if we take A big enough and use inequality (2.26) we get
I(n™)71IZ2 < 0.

An analogous inequality can be obtained in the same way for ¢™+1

|
Theorem 9 (Stability) If (2.20) holds and if At is small enough

(At)™! > (2max(cs, c7) + 1)]|div U] oo (ze), (2.28)
then solution of (2.22) and (2.23) satisfies
1672 < {160 |Z= + 7] exp [(2es +1)|[div Ul gen i) 7]

™12 < lleonll3 exp [(26r + 1) || div Ul o zmyT].

“Here A can depend on h and on At.
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Proof: We multiply equation (2.22) by §7*" and sum over index 1

/(0n+1 _ 0n)0n+1 dX + At /U(tn+1) .v€n+1 6n+1 dX-I—
0 0

+0 [ ( Coc )vaﬂ“ V6 dx = —es At [F()(EH 6" dct

teAt /div U™ (07 dx + esAt /a"+1 dx
0 0

and, using
2 (67 - 7)m+ de = 07 Fa — 073 + 67 —07F (2:29)
we obtain the inequality
1612 — 116722 + 20]| VO™ s < At(2eq + 1)]div Ul posqzoe)|67F 22+

+Atcsel|6™|2: + Atese™ 0,

where € is a suitably small positive constant. Now we drop the third and
fifth term and sum over index n from 0 to m — 1

m—1

[16™1122 = [|6onll2: < At S (2¢4 + 1)[|div U||poo(z)]|6™ 172 + (2.30)

n=1
+At(204 + 1)“d1V U||Lm(L°°)[|9mH%z+
+At(204 —+ 1)||d1V U”L“’(L“’)”eOhH%Z’ + mAtC5€_1lQI
and At is small enough such that « = 1 — At(2¢s + 1)||div U||ze(z=) is

positive. Now we put the second and third term of the right side of (2.30)
on the left side and divide by o

16™[1Z2 — [16onllze <

At "= T
—Z (2es + 1)|div Ullpe(zeo) 167122 + —cse™ Q.

a

11,_

Now using Gronwall discrete lemma 2 we have the thesis.
An analogous proof can be built in the same way for ¢™.



Chapter 3

Space filtered turbulence model

As it was shown in chapter 1, space filtered LES model averages Navier-Stokes
equations over space using a Gaussian spatial filter and then approximates
nonlinear terms using a Taylor expansion with respect to the filter width.
The resulting equations for averaged quantities are like Navier-Stokes ones
but with a nonlinear second-order term.

In Section 1 a global existence theorem for the solution of SF model is
given provided initial data and forces are small enough. We use a standard
fixed point technique (Schauder’s theorem) for nonlinear problems, intro-
ducing a continuous map from a convex compact set into itself. In order to
deal with the high order nonlinear term introduced by SF model, we have
to use norms on Sobolev spaces of high order and accept initial data only
with a small enough H*(Q)-norm. In this way we can show that the new
function is still in the starting compact set. The solution found is then in
C°([0, T; H3(2))N L2(0, T'; H4(K2)), with Q an open, connected and bounded
subset of IR® or IR? with regular boundary.

In Section 2 we provide a uniqueness theorem for small solutions and
show the existence of periodic asymptotically stable solutions and therefore
the existence of stationary solutions for external forces independent of time.
Notation: In this chapter we will assume:

o cvery repeated index on the same side of an equality or inequality is
summed;

e density p is equal to one;

e the expression DUD?*U means Bj(%—;azUjang) = ga,UjalajU,-. Every

49
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calculation will be made on the former expression only for simplicity of
notation;

¢ is an appropriate positive constant depending only on the domain €2;

f will be splitted as a sum of a gradient, which goes into the pressure
term, and a divergence free field tangential to the boundary, which will
still be indicated with f;

L*(Q) is the Hilbert space of measurable functions whose square has a
finite integral over ;

H™(Q) with m > 1, m an integer, denotes the Hilbert space of functions
in L?(f) with distributional derivatives up to the m-th order in L ()
and is called Sobolev space;

H%((?Q) is the space of the traces on the boundary of functions in

HY Q). HY(R) is the space of functions in H'(Q) with null trace on
the boundary. When H™(Q) with m > 1 is referred to fluid velocity, 1t
is always H™(Q) N Hy(Q);

a Sobolev space with index div means that its elements are divergence
free;

0;Uy means

O,Us := —UoVUo + vAUs — DU D*Uy + Flemo— VP,. (3.1)

Since initial value of pressure P, is not known, we have to get 1t applying
operator V to differential equation (3.1)

)\2
APO = —6,-U,~06,-Ui0 — —é;ajazUioaza,;Ujo in Q, (3.2)

where boundary conditions are obtained multiplying equation (3.1) by
the normal to the boundary n

OpPo = vAUy -1 — DU,D*Uy-n on 0.

In order to assure existence of P, we have to prove that

)\2
fn 000,00 — 5 050Ui000Uj0dx = fa AUy -n.— DUpD*Up - dx
(3.3)
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Adding the integral over Q of vdiv AUy, which is zero, to the left side
of (3.3) and integrating the whole side by parts, using the conditions
(1.45) on initial datum, we easily get the right side.

3.1 Global Existence Theorem

In this section we are going to show that under compatibility conditions
on initial and boundary data, if the initial values of velocity and external
forces are small and regular enough, solution of SF model (1.44) exists in
C°([0,T); H¥(Q)) N L2(0, T; H4(Q)) for every T > 0.

By using a typical technique for nonlinear problems the theorem will be
proved showing the existence of a fixed point for a suitable continuous map.
Namely, we build a continuous map which, starting from an initial function
w, gives another function u, in the same convex and compact set and such
that, if U = W, we have found the solution of our problem. In order to have
every U in the same starting set as W, we will have to reduce the appropriate
norm of initial datum and external forces. Since our fixed point map uses a
differential equation to find the new u, we will prove that a solution exists
and is unique using well-known results about linear nonstationary Navier—
Stokes problem. Once divergence free velocity is found, pressure is recovered
by means of orthogonality results.

Definition 4 (Compatibility conditions) We say that the initial datum
Uo € H3(Q) satisfies compatibility conditions if Uy and 8,Us have null trace
on the boundary of Q and divU, = 0.

These conditions are used to assure that SF model is satisfied at initial time
too in order to estimate the L?(H?)-norm in terms of the H'(L?)-norm of
the solution. “

Theorem 10 (Existeﬁpe) There exists a 6o € RT such that for every § €
(0,60 of we assume that

1. Q is an open bounded\x{onnected set of R® with reqular boundary;
2. initial condition uo satisfies compatibility conditions;

3. ”U()“H'a _<_ 52;
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4. ”f||L2(H2) < 62 and Hatf“Lz(Lz) < 52,'
then the solution of SF (1.44) ezists in C°([0,T}; H3(2)) N L%(0,T; HY())
for fluid velocity and C°([0,T1; H*(2)) N L%(0,T; H3(QY)) for pressure.

The proof requires several steps. Let us start by defining the following
set

A={W:[0,T]x Q> R® | Wieo=Uo

W | om(synzzarsy < 6 A 18W || poo(amynzaqary < 6 A [|0:0:W | 2(z2).< 5},

with & positive constant which will be defined later, and build the following
map, which from W gives, after solving a differential problem, U:

0, U+ VP —vAU = -WVW — DWD*W + f
divU =0 (3.4)
U|an=0 U[t:o:UO'

We define F =: ~-WVW — DWD*W + f.

Let’s introduce the orthogonal projection
Pr:L3Q) - L4, () ={U€L’| U-n=0 A divU =0}
We want to find U € L%([0, T}, H;, ()) such that

{ 8.U — vPrAu = —Pr[WVW + DWD*W| + f := F(t) 35)

Ult:O - Uo.
Due to the orthogonal decomposition L2(Q) = L}, ()@ G, where G = {V €
L?(Q)| V=Vq A g€ H'(Q)}, this problem is equivalent to (3.4).
We need, at first, the following results:

Lemma 4 If hypothesis of ezistence theorem are satisfied, then | Fllazey <
cb?.

Proof: We start with the L2(L?) norm of F and use the fact that, since Pr
is a projection, for every function ¢ one has ||Pré||zz < ||¢||zz-

[ir@isa < [wowiga s [iowowigae+ [ <
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< W e (e W Loy + ellW 22z W oo a2y + 1 Fll 22y < 6.

Moreover, the time derivative 0,F satisfies

T
/0 18:F ()22 dt <

T 9 T T
< [1owvw)gs ds + [10(DWD*W)|2 ab + [ 0,72 db <
0 0 0

< cl|BW Loz IW | 22arsy + lIW 17 oo 2oy |10 || 22 112y +
10 fl1F2 2y < 8.

O

Lemma 5 If hypothesis of existence theorem hold, then ||0:Usl|f: < c62.

Proof: The true meaning of 6,0, is 6bviousl§ the one given under Notation,
therefore, from (3.2) we have

VPl < cl|0:U00:Uil| 2 + c|| D*UsD?*Us|| 12 + ||§]m <

< c||Usllze + cllUollzs + cl|Uolzr= < 87,

where § = vAUp - 2 — DUy D?Uy - 71, i.e. the boundary value of Neumann
problem extended to the whole domain Q with 72 the normal to the boundary
extended to .

Finally

atUo = —UoVUo + I/AUO - VPO - DU0D2U0 + flt:O
10:Usllr: < ellUslzre + ellUollrs + ¢l V Pollzr + el Uollzs + cllf,_gllr < eb”.

|
We are now in a position to prove:

Proposition 1 Under hypothesis of ezistence theorem, a solution of problem
(8.5) ezists in C°([0, T]; H3(Q)) N L*(0,T; H*(Q)) and

”atUHLoo(Hl) + ”atatUHLZ(LZ) S 652.
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Proof: Since problem (3.4) and (3.5) are equivalent, using a result in [24,
Chapter 4, Corollary 2, if FF € H*(0,T; L?(Q)), if compatibility conditions
hold and if 8,Us € H(Q) then U exists and is unique in C°([0,TT; H3}(Q)Nn
L*(0,T; H*(9)).

Now, deriving equation (3.4) with respect to time, multiplying it by 6,0,U
and integrating over {2, we get

”atatUlliz — V\/;)PABJJ . atatU dX = /{;@F . atatU dx

10,813 + £8,89U|3 < |a0U | + 10|
Therefore, using lemma 4, taking € = 1/2 and integrating over [0, 71,
[18:0eU 13222y + v [10:U | Loy < cv||8:Uol3 + 10:F |72 (z2)- (3.6)
Using compatibility conditions and thanks to lemma 5 we can state that
18:U | oy + 18e8eU || p2(z2y < €6”.

O
Proposition 2 If § is small enough the set A is not empty.

Proof: We take the Hz(AQ) function

= ( Flemo = DU,D*Us — UpVUo — V Po) on
and extend it to a function ¥ in C°([0, T]; HY(Q)) N L2(0, T; H*(Q)), namely
this function must satisfy (¥j.=0)jpe = %. This can be done thanks to [26,
Volume 2, Chapter 4, Remark 3.3] (with j = 0, m = 1, X = H? and
Y = L?), which, in our case, states that the map which extends H'()
functions to L2(0, T; H(Q))NH(0,T; L*(Q)) is surjective. We then consider
the following heat problem

{ 3tV - VAV =Wv
1/v‘t=0 = Uo X/IBQ =0

and observe that its solution belongs to C°([0, T]; H3(Q)) N L*(0, T; H*())
since Uy € H3(Q), ¥ € C°([0, T); H*(Q))NL*(0, T; H?%(Q)) and compatibility
conditions (those for the heat equation, not those in Definition 4) for Vji=o
and (0;V )j=o = Y=o + vAU, are automatically satisfied from our choice of
U. Moreover, due to the bound on Up and therefore on ¥, choosing 6 small
enough, we have that V € A.
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O

Proposition 3 The function U obtained from (8.4) belongs to A.

Proof: Since we have proven that a solution U/ for problem (3.5) exists and
that problem (8.5) is equivalent to (3.4), there exists a solution U,VP of
(3.4). Observing that U — vAU — F ¢ L*(0,T; HY(Q)) implies VP ¢
L?(0,T; H~*(Q)), this solution satisfies the Stokes problem

VAU — VP =68,U + WYW + DWD*W — §
divl = 0 (3.7)
U]an = 0.
If the term on the right side of (3.7) is in H?(Q), we have [24, Page 40]
1Ullzs + VPl < O + WYW + DWDPW ~ fllg (3.8)

1Ullzs + |VP|la2 < cl|8U + WYW + DWD*W — f||g, (3.9)
which implies .
U llzeerey + IV Pllpeoqary < ellBeU oo ary + cl| W[ o ggay+
FellW oo zoy + cll fll ooy < 82

To have the same estimate on norm L*(H*), U and P can be seen as a
solution of Stokes problem

vABU — Va,P = 8,8,U + at(va) + 8, (DWD2W) —8,f
diV atU - 0
atU|aﬂ = 0

Therefore we have
18:Ulz2 + |0:V P12 < | 8.0.U + 8(WVW) + 8,( DWD*W) — Bf| i
integrating this expression and (3.9) on [0, 7] we get
10U || 222y < cl| 88U || 212y + c”W”Lz(H*)“atW“LW(Hl)‘i‘

+C”W”Loo(HS)”atW“LZ(HZ) + C”atf“LZ(LZ) < cb?.
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Therefore
WU\ z2gerey + |V P 22y < ell@eU |2y + cl| Wil poe ey | W | z2(ars) +

+CHWHL°°(H3)“W”L2(H4) + C”fHLz(Hz) < cb?.

Finally, if § is small enough, we have shown that
VP € CO(0, T; H'(R)) N L0, T; BA(2),

1Ullzeocasy < 8 1Ullz2qae) <6,
80 gmgary < 6, 180 lrn < &,
16:6:U | L2(22) < 6.
This means that codomain of map (3.4) is A.

O
Proposition 4 (Compactness) A is compact in C°([0,T]; H*(Q2)).

Proof: We observe that from inclusion L?(H*) N H*(H?) C C°(H?®) we can
state that A ¢ C°([0,T); H%()). From Ascoli-Arzela theorem [13, Vol. 1,
page 142] A is relatively compact if and only if A is equicontinuous and for
every t € [0, T] the set A(t) = {f(¢) € H*(Q) | Vf € A} is relatively compact
in H%(Q).

Since in one dimension H*' functions are Holder functions, then A is im-
mediately equicontinuous [13, Vol. 1, page 142]. Finally A(¢) is bounded in
Hilbert space H3(£) and therefore it is relatively weakly compact. There-
fore, from {fi} € A(t) we can extract {f, } which converges weakly in H®
to f. From Rellich theorem H?® is compact in H? and therefore {fi,} con-
verges strongly in H? to f. This means that A is relatively compact in
Co((0, TT; %)

To prove that A is closed, we take a sequence ¢, € A which converges in
C°([0,T]; HY(Q)) to ¢. We are going to use the facts that a bounded sequence
in a Hilbert space has a subsequence which converges weakly and that a
bounded sequence in L*(X), with X an Hilbert space, has a subsequence
which converges weakly star; in both cases the norm of the limit function
is not greater than the bound on the elements of the succession. Since J:¢n
converges to 8;¢ and 0,0,¢,, to 0:;0:¢, in the same way we have the bound on
time derivatives of ¢. Therefore ¢ € A.
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O

Proposition 5 (Continuity of the map) Under the same hypothesis of
ezistence theorem, map (8.4) is continuous in C°([0, T], HA(Q)).

Proof: We take a sequence W* which converges to W in C°([0, T); H¥(Q))
and is bounded in L*(0,T; H3(Q)) N L*(0, T; HXR)). We want to show
that the sequence U* created from W* by map (3.4) converges to U in
Co([0, T]; L)) n L*(0,T; H(Q)) and therefore, thanks to proposition 4,
it converges in C°(H?) and this means that our map is continuous.

We define V* = W — W* and S* = U — U* and we subtract differential
equation for U* from the one for /. The result is

8:S* —vAS* = —WVW + WEYW* — DWD*W + DW*D*w — VP + VB,
multiplying by S* and integrating over Q we get
1
SOl S* N7 + 1| S¥3n <
kyk kvirk 1k
< [|svEvw]ax+ f| Stwro v axt
+ [|s*DV*D*W|dx + [[s*pw*D?v¥ ax <
0 0
< el SH IV WLz + el S| 12 [ W] 2 | V¥ s+
+el SH Iz IVF a2 W [ 10 + el| S |02 [ W || 1gs | VA 12 <
C
< 41+ S 8VE
Taking € = v/2 and integrating on [0, T], we have
”SkHIZLZ(Hl) + ||5k”12;m(1;2) <
S C62”Vk”12'42(H2) — 0.

O
We can now conclude the proof of existence theorem 10. In proposition 5

we have proven that map (3.4) is continuous and therefore, since A4 is a non-
empty, convex and compact set in the Banach space C°([0, T}; H?*(Q)), using
Schauder’s theorem there exists a fixed point u of map (3.4). Clearly, this
fixed point is a solution u of SF model, which is small in C°([0,T]; H3(Q))n
L?(0,T; H*(Q)). The corresponding pressure P satisfies VPe Cq0,T;H'(Q)
NL*(0,T; H*(Q)). :
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3.2 Uniqueness and Periodic Solutions

Theorem 11 (Uniqueness) Under the same hypothesis of existence theo-
rem, for § small enough a solution of SF model U € A is unique in A, while
VP is unigue.

Proof: We define S = U — V, which satisfies

8,5 —vAS = —UVU + VVV — DUD?*U + DVD?*V —VPy; +VPy
divS =0
S|t=0 =0 S]an = 0.
(3.10)
If we multiply by S, integrate over {1 and use the fact that div.S = 0 we get

>dx§

Integrating on [0, T'] we can obtain, remembering that U and V are small in

L>=(0,T; H3(Q2)),

1
§6t||5||%2 + v||S||E: <

gﬁ&@m&

dx + C/{;(lalsjajalUiSi

+0:v56.8:;8;

< cll S Tz + el (101 + Vs )

ISZ + 1SN 2 ey < e8I SlIZagan),

IS®)]z= < 0.
Uniqueness of VP follows from system (3.10).

O
To have uniqueness of P a further condition on P must be imposed, such

dex = 0.
Q

Theorem 12 (Stability) Let V and U be two solutions in A with different
initial values. If & is small enough, the L*(Q) norm of their difference is
controlled by the L*(Q) norm of the difference of their initial values and
decreases exponentially with time.

as
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Proof: Let S =V — U. We have

0.5 —vAS = -VVS — SVU - DVD?*S — DSD*U — V(Py — Py)
divS =0
SIt:o =W-Us S]an = 0.
(3.11)
We now multiply against S and integrate over {2

1
SOISI2 + VIS <

< e[ IS Ul + IS IV s + 1S 0] < 812,

having integrated by parts the terms [V (VS)Sdx and [,DV(D?S)S dx.

Changing the value of ¢ we easily have for § small enough

8:/|Szz + <ol SIIZ2 < 0;

a Ci
5 (e1s1z:) <o,

V() = U7z = 1SONZ2 < ™ [S(0)]IZ2 = e[V — o]l

O

Theorem 13 (Periodic Solution) Let f be periodic of period T > 0 and
let hypothesis of existence theorem be satisfied with 62 instead of §. Then
there ezists a periodic solution of period T' which is asymptotically stable and
unique among any other solution which satisfies existence theorem.

Proof: If 62 is used instead of §, our solution is smaller than 62 and initial
datum is smaller than &*. ,

We will follow here the approach of Serrin [41]. Let U be the solution of
SF model with Up as initial value; let’s define

¢.(z) =U(nT,z) VnelN;

we want to show now that @, is a Cauchy’s sequence in L2(Q). Therefore
we take two natural indexes, n and m, with m > n and define

W(t,z) =U(t+ (m —n)T,z).
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This means that W is a solution of SF model with initial value U((m—n)T, z).
Thanks to stability theorem we get

IW () = U@ < e |To — U((m — n)T, )2 < 266"
which, taking ¢t = nT', becomes
|U(mT) = U(nT) | = [[W(nT) ~ U(nT)|% < 266777,

Therefore ®,, is a Cauchy’s sequence and @, — @ in L?(Q2). The function @
is also the weak limit in H?, strong limit in H™ for every m < 3, in particular
the uniform limit of ®,. Moreover, since the weak limit of a succession in
Hj remains in Hj, we have that compatibility conditions on 8,®, which are

0,8 = —8V® +vAZ — DBD* + fy_, — VPs,

where Ps satisfies
)\2
AP@ = —6in08jUio — aajalUioalainO in ()

0,Ps = vAUy -n — DUyD?*Uy - n on 09,

are satisfied for every ®,, since they are solutions of SF model calculated at
different times and f[ e = fl .+ and therefore they are satisfied for @ too.

For the same reason, the divergence of @ is zero and the H*(Q)-norm of &
is smaller than cé2. '
We have now to show that a solution V having ® as initial value is
periodic. Let’s define
V(t,z) = U(t +nT,z);

since f is periodic, V is a solution with initial value ®,(z) and therefore
V() = V()7 < ™' @ ~ 4 Z-.
Taking t = T we have
IV(T) = @niallze < e[ — &allZ,
which becomes, when n — oo,
V(T) =& = V(0).

Uniqueness follows from the fact that V' is asymptotically stable.
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O

Corollary 3 (Stationary Solution) Under the same hypothesis of peri-
odic solution theorem, if f is time-independent, the asymptotically stable
solution is constant in time.

Proof: A constant function is periodic of period 1/n, for every natural n.
Therefore, once taken an initial value, V is unique and periodic for every @).
Since Q) is dense in IR, V is constant.

O
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Chapter 4

Eddy viscosity SF turbulence
model

As it was shown in Chapter 1, eddy viscosity space filtered (EVSF) large
eddy simulation model (4.1) averages Navier-Stokes equations over space
using a Gaussian spatial filter, approximates nonlinear terms using a Taylor
expansion with respect to the filter width and approximates the SGS terms
using a Smagorinsky model. The resulting equations for averaged quantities
are like Navier-Stokes ones but with a nonlinear second-order term and a
non-constant eddy viscosity summed to the kinematic viscosity.

In Section 3 a global existence theorem for the solution of EVSF model is
given without the typical hypothesis that initial data be small. This is due
to the presence of eddy viscosity which manages to control the convective
and the SF term. We use a standard Galerkin technique, building a priori
estimates in Section 2 and then showing that the Galerkin approximation of
the solution converges thanks to these estimates and to positive properties
of the eddy viscosity term. In order to deal with the high order nonlinear
term introduced by EVSF model, we have to use norms on Sobolev spaces of
high order and accept initial data only in H?*(Q). The solution found is then
in HY(0,T; L*(Q)) N L2+2#(0, T; W12+24(Q)), with Q an open, connected and
bounded subset of IRY with regular boundary.

In Section 4 we provide a uniqueness theorem and show that under certain
hypothesis our solution decays to zero.

63
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4.1 The problem

EVSF large eddy simulation model, often simply called Large Eddy Simula-
tion, can be stated as:

( N 1 N
OU: + Y. Usbilis = 8P +3_0, [(y + C’||VU[[2“)6,-U,-] +
=1 N Az I=1
< —Z Bj[——BIUiBIU,-] +f,; 1= 1,...,N (4.1)
=1 27
s
N
Z ajUJ =0,
\ j=1

N
Ulag =0 U|t=0 = Uo Zaonj =0 UOIBQ = 0,

j=1
where 4> 0.5 and, in numerical computations, is usually taken equal to 0.5,
7 is usually taken equal to 6, A is usually taken equal to the grid size and
C is usually the square of the grid size. It is interesting to observe that the
coefficient of the eddy viscosity term is usually taken as twelve times the
coefficient of the other turbulent term.

For sake of simplicity, we changed the second term of right side of this
model by substituting mean velocity deformation tensor D with the mean
velocity gradient VU. We observe also that for A = 0 the study of solution
of this problem can be found in [23] without smallness conditions on initial
datum while for ¢ = 0 the study of solution can be found in the previous
chapter and in [10] only in the case of small initial datum.

Notation: In this chapter we will assume:

e a norm without index is the standard vector norm of RY not a func-
tional space norm, therefore it is still a function of time and space;

e a functional space norm of a vector function is the functional space
norm of the vector norm of that function;

o every repeated index on the same side of an equality or inequality is
summed;

o density p is equal to one;
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¢ (and not C) is an appropriate positive constant depending only on
the size of domain Q and on the constants of our problem (C,v, u, N,
A and v);

f will be splitted as a sum of a gradient, which goes into the pressure
term, and a divergence free field tangential to the boundary, which will
still be indicated with £;

LP(Q) is the space of measurable functions whose p-th power has a
finite integral over ; it is a Hilbert space when p=2;

W™(Q) with m > 1, m an integer, denotes the space of functions in
L?P(Q) with distributional derivatives up to the m-th order in LP(Q);

H™((2) denotes the Hilbert W™?(Q) and is called Sobolev space;

Hé(aQ) is the space of the traces on the boundary of functions in
H(Q). H}(Q) is the space of functions in H'(Q) with null trace on

~ the boundary. When H™(Q) with m > 1 is referred to fluid velocity, it

is always H™(Q) N H(Q);
a space with index div means that its elements are divergence free;

0:Uy means
0o = — U300, + 05 [(v + C||VUo|[*)8;U0] +
A2 |
—%alaona[Ujo + f|t=0 - VPO (42)

Since initial value of pressure Py is not known, we have to get it applying
divergence operator to differential equation (4.2)

APy = —0;U;00;Uso + Co; [BiIIVUoljz“BjUio} +

)\2
—%BJBjUiOBJBino in Q, (43)

where boundary conditions are obtained multiplying equation (4.2) by
the normal to the boundary n

2
8, Py = aj[(u + CHVUon“)BjUO] ‘n— ;—alaonalUjo ‘n on 8Q.
i
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In order to assure existence of Py we have to prove that

2
/ﬂ—@-UjijUm - ;—BjBIUiOBlaino + CBJ [&HVUH”BJ-UZ-O} dx =
Y
2 A?
= ./,;gj [(V + C”VU()” #) 3on] *n— EB,BJUOBIUJ-O - ndx. (44)

Integrating by parts the left side of (4.4), using the conditions (1.45)
on initial datum, we easily get the right side.

4.2 A priori estimates

Definition 5 (Compatibility conditions) We say that the initial datum
Uo € H*(QY) satisfies compatibility conditions if Uy and 8,U, have null trace
on the boundary of Q and div U, = 0.

These conditions are used to assure that EVSF model is satisfied at initial
time too in order to estimate the L%-norm of time derivative of initial velocity
in terms of the L%-norm of ||[VU,||**AUL.

We start by showing these lemmae which will be used during the proof
of the following theorems.

Lemma 6 Let B be a positive real number, let a, b and o be three non-
negative real numbers and let p and q be two real numbers larger than 1 such
that

11

-+ -=1.

? q
Then we have

1.1 q
aarb? < Ba + —a—b(,@p)—%.
q

Proof: Using Young’s inequality

1,1 €Pa  af
aarbs < — + —
p €lq
and choosing
L

we get the thesis.
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O

Lemma 7 Let ag;, brj and c;; be three NxN matrices with non-negative

elements. Then
D akibejcsi < |lall |[5] [l
i3,k

Proof: To prove this inequality we simply

L
2

> aubisesi = 3 | 3 T P [ > gk;ak,.bk,-] 2J : [ 5 c;l} <

- [Z (;“’3)@”%)“2&] _

%)

: : :
- |z [Sa| [Sa] = e
ik ik i
where we used Hélder inequality to prove the two inequalities.

O

Lemma 8 Let bji be a NxN matriz with non-negative elements and a; be a
N vector with non-negative elements. Then

> ajbza; < [la))? [lB]).
1,3
Proof: This lemma is proven in exactly the same way as the previous one.

O

Theorem 14 (First a priori estimate) Assuming that U, L*(Q) and
that f € L*(0,T; L*(Q)), if a solution of problem (4.1) ezists in a distribu-
tional sense and if

A2

C>— when p = 0.5,

2y

then
U222y + VU (1 F2(2) + IVU||Z2420(g2 420y <
< T + el fllzazey + €| Uoll3

with ¢ = c(v, i, |, C, A, 7).
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Proof: We multiply the first three differential equations (4.1) by U;, sum
over index ¢ and integrate over )

-;—at“U“%z’ + V”VUH%; + C/AIVUHHM dx <

A2
= %/QZIBIU’B’UJ@UA dx + || fllz=|U |22 <

1)j)l

)\2
<5 A;vvusdx + 12Ul ze,

where lemma 7 has been used. The right side term can be estimated when
= 0.5 with

A IOTRE 4 S+ T
2y Lren T gy WL T 9 L

and integrating in time we easily get the thesis. If u > 0.5 we estimate it

with
)2

2y
[# v
< €||VU|3t% + ~+5lIVUIE +

3

3 1-3352 i 2 £ 2 <«
VO a5 + 013 + £ 512

Cc
|11

Taking € small enough and integrating in time we get the thesis.

O

Theorem 15 (Second a priori estimate) Assuming that U, € L*(Q), that
f € L*0,T; L*(Q)) and that 8.f € L*(0, T; L*(Q)), if a solution of problem
(4.1) exists in a distributional sense and if

)2
C>— when p = 0.5

Y
9\ 21 _ p12e-1 (4.5)
C > (-A—) L [4# 2} when p > 0.5.

Y) 2p| vp
then

10U | 2em 22y + VU] ey + “VU”iﬁ&m;‘) + IV8U|[72(12)+
T T
+/()A]V8tUll2|IVU]|2“dxdt—i-/ofn(v[].atv[])2”v[]||2n—2 dxdt <

< C[HatUoHiz+HVUolliz+HVUoHi”szé‘ﬂrHfH%z(Lz)Jrllatflliz(Lz)]eCT-
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Proof:
We derive in time the first three differential equations (4.1)

8:0.Us + 8.U;6;U; + U;0,0U; — vB,A; — C0, [a,-atU,-HVUHﬂ +

—2uC9; [ajUi“VUHZ#_ZahUkatahUk] =

2

)2 p
= —0.0.P = 2-0,{06.U:0;] - 3, OiOU:B0.T;] + 0.,

and multiply by 8,U;, sum over index i and integrate over Q)
SOMOU % + 30,6000 dx + € J1av U v et
o)
+0||8, VU2 + 2u4C /na,-Uia,-atU,.||VU;]2#-23hUkatahUk dx =
)2
= 5, J{000.00,0,00. + 0v.000;0,01.) ax + Jasom,ax <

)2
< = fjlovuiP|vulax + [5.f:00: dx (4.6)

v Ja
We are now going to estimate the first term of the right side. Since we will

need exact estimate’s constants, we will go into deep details. In the case
1> 0.5 we have

A2 2 _)‘_2 ﬁ Z“tl X
— Jlavuvul s = AL N T Ao P

2 1

< ?[AIBNUHZHVUHZ“ dx] ﬁ[/r“atvvuzdx} = <

< 71893 + (?)2"51;[4‘;: 2}2”_1 /rl]VU“%HatVUszx (4.7)

and in the case p = 0.5 we do not need any other estimate.

We now take the first three differential equations (4.1) and multiply them
by 8:U;, sum over 1 and integrate over '

v
100132 + [U;0,0:00: dx + £, VU2, + € [YU-8v0| VU ax =




70 CHAPTER 4. EDDY VISCOSITY SF TURBULENCE MODEL

)\2
= %AalUialUjajatUidX + /nfiatUi dx (4.8)

Let us estimate the first term of the right side whose absolute value, when
p < 2, 1s smaller than

%2- [IVUIFlI6: VU] dx = %AIVU”“HBNUH IVU|** dx <
< 5| fmoriesorad | frovia) <

< Oe [|VUI 07T ax -+ €0,,C, ) [|VU[* dx + c(u)ie (49)
When p = 2 we have

)\2

3 JIVUIPI8:9U | dx < Ce [|VUH|aTU? dx+c(3,7, G, e, |9), (4.10)

while when pu > 2 we get

;AIVUW“&VUH dx = ;/(“VU”zHatVU”%HBNU]]'JT_2 dx <

2 ¥ =
<2 2p 2 I <
_27[ Jivuirjevu) dx] [ Jlavu] dx] <

< %AIBNUH%H c(A, p, €1, C, ) + 06A|v01|2“||atvvlfzdx. (4.11)

Let us evaluate the last term of the left side of (4.8)

c /Q ( ) BhUkBtahUk) (Z(ahw)ﬁx _

‘hik
_ C 0 9 u+1_ C b 242n
S 2u+420t n(h%;(ahUk) )dx T t20t AIVUII dx.  (4.12)

The last thing we must now estimate are convective terms of equations (4.6)
and (4.8). The absolute value of the first is estimated, using lemma 8, Hélder
inequality and embedding theorem, as

ZABtUjl 0;Us] 10U | dx < /{ll&UHﬂ]VUH dx <
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<[ fjovee] [ Jjevigivo)t dxf <

< |8, VU|% + c[A]BtUllgllVUllng}g <

— 16
e EA c[< A[atUllzdx)%< AWUHMX) %F <
< 1510:VUI3s + el |3 VU3, (4.13)

while the absolute value of the second, which is of lower order, can be esti-
mated in the same way?!.
Finally if we sum equation (4.6) with equation (4.8), consider estimates
(4.7), (4.9), (4.10), (4.11) and (4.13) and take into account (4.12) we get
0 C
5 1001+ VYU s+ - VU 4

H18U |2 + v]|8:VU |2 + 2(C — 6) A|atvv||2|lvvl|2u dx+

e /Q(VU-BNU)ZHVUHZ“‘Z dx <

< e[ IVUILE + 1601 VOIS + 13 + Iaf o+ 1], (10
where ¢ is a positive constant which can be as small as we need and § is
2
eC + — when p = 0.5
§ = 7 9\ 21 2u-1 (4.15)
eC + (A—) L [4# — 2} when x> 0.5.
Y] 2u| vu

Now we want to use Gronwall lemma 1 to obtain the thesis. However, due
to the presence of the first term of right side of (4.14) we have to check
that HVUHLz(La) is bounded. To do it, we start from first a priori estimate
theorem (14) which shows that | VU||2+24(z2+24) 1s bounded and use the
following inequality

IVUIZ2zsy < IVU 2242000y T < (1QNT= ||V U|[Zer2wg2rom)-

O

11t can be estimated also in a better way, but it is worthless here.
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4.3 Global Existence Theorem

In this section we are going to show that under compatibility conditions on
initial and boundary data, if the initial values of velocity and external forces
are regular enough, solution of EVSF model (4.1) exists in H(0,T; L*(Q))N
L2280, T; Wy it (Q)) for every T > 0.

Theorem 16 (Existence) If condition (4.5) on C is satisfied, if initial da-
tum Uy € Wyt ?¥(Q) and i f € L*(0,T; L*(Q)) and 8:f € L*(0,T; L¥()),
then a generalized solution of EVSF problem exists in H'(0,T; L*(Q)) N
L**2(0, T; WoaH(Q)).
Proof: Let us define

Jotauz = H(0,T; LA(Q)) N L¥2(0, T; Wi+ (Q))

and let us take o/, an L?(Q)-orthonormal base of Wol,fitz" (Q) with the non-
restrictive hypothesis that a! = Uy. Now we introduce

Vr = Z cln(t)al(m),
=1
where the coefficients ¢;,, are chosen to satisfy the differential equation

/ (atVﬂa’ + (v + O|VV***)VV™.Vd! + Wa,-vw’) dx=  (4.16)
Q

2
= A—‘/ahV-"ahV"ajaldx—l— /fal dx Vi=1,...,n.
2v Ja Q

We observe that a priori estimates of theorems 14 and 15 hold for V™ too.
Since this is an autonomous first order differential equation with cim(t) as
unknowns and since from the first a priori estimate we have that

“ 2 _ ni2
tfeffg:%éczn(t) = V™| (22

is bounded with respect to n, we can conclude that, since this differential
equation is Lipschitz in the unknown ¢;, on every compact set, this is enough
to assure existence and uniqueness of ¢,.
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From the sequence V™ we will have to choose subsequences which converge
in some sense. For simplicity, these subsequences will be still denoted by
V™. Thus, thanks to the uniform boundedness of HV"HJ;;&2 ,» the sequence

K,

converges to an element in ‘]21-’%12#,2 strongly in L?(0,T; L3(Q)) and weakly in
‘]21-’%12;1,2' If we use now the imbedding theorem

V™ llzazey < e(1QL TINGNV V™| 212y V™ 22 29 (4.17)

we have that ||V™||p¢(Lse) is uniformly bounded, which together with strong
convergence in L?(0,T'; L*(2)) assures strong convergence of V" to V in the
norm of L(0,T; L4(Q)) for any 1< g<A4.

From equations (4.16), V™ must satisfy

T .
//Q(atvn + VIO V™® + (v + C|[ VYV )V V™. Vb dx db —
0

X T Ve vma.s deds + [0 dxd
_2_;/0/0,”.,11/,- xt—i—/O/nf xdt (4.18)

where ® € P™ is an arbitrary function obtained as a linear combination of
a'(z) with coefficients di(t), where this coefficients are absolutely continuous
functions of time with square surnmable first derivatives. Let us try to pass
to the limit in (4.18) assuming ® to be fixed. This may be done without any
problem in the first? and last term using the above properties of the sequence
V™. To pass to the limit in the strongly nonlinear second and third terms
we use an idea of Minty and Browder in [29, 31, 30, 6]. We introduce the
functions

: )\2
AVV™) = v+ O VP87 53 V7oV
h

which, in view of the a priori estimate theorem 14, are uniformly bounded in
2+2p 2+2p

L1240, T'; L1+2+(Q)) and therefore converge weakly in this space to functions

B¥(z,t). Therefore the limiting equation of (4.18) is

T A T
/ Ji [(am + V;8,V2)8; + B6,3; dx] av = [ Jfdidxas (4.19)

?To show this for the convective term we have to use a Holder inequality and strong
convergence in L7 for every q < 4. '
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which is valid for every ® in P™ for every n and therefore is valid in P =
Uney P™. It is now easy to verify that this implies that it is valid for any &
in J2+2“ 2. We now need the following lemma

Lemma 9 If condition on C (4.5) is satisfied, using the definition of AF,
for any two differentiable functions v' and v" we have

r(v',0") =3 [AH(V') ~ AH(V")(Bkv] — Bevy) 2 5 3 (Do — ko)’
‘ El
Proof: We introduce v™ = 7v’ + (1 — 7)v" and we have

oy 11 k T 1 "mo__
r(v',v") = ; [/OdTAl(Vv )d'r](ak'ul Ov)) =

(3 7 ) d'r] (Ogv] — Bgvy) =

-5

[ BVAH(VoT) O

i1j’kyl 6(6 ’UT)
]aAk Vo' ! " / "
= Z [ OT(IB(_JUT—)) dT] (6.7’01. — 6.7’01. )(akv[ _ akv[ ) —
.)jik l J

2:/[@+«mvwwwﬁw+zomwww“*ammm

,9,k,1

A2 D © :
- 5—:)/—6_1’0;5; — %6_7’0[54 dr (ij: - ij,’-')(akv{ — Bkvl") (420)

We estimate now the second last term of (4.20), when g > 0.5, with

Z Ojvg(0jv; — 05v! )(Brv) — Brv!’)| <

3,5,k

2

A 1 2u—1
sﬁmwwwwwwwuww%<

v AT\ 14y — 27201
< -V v "2 ( ) l: ] T)|2p . "2
R e R e
and, when g = 0.5, with

2
o Z 050kl 1850; — B;v}'| |Bkv; — O] < ;—I!VWII Vo' — Vo|*
g

)J!

Evaluating the last term of (4.20) in the same way and substituting these
estimates into (4.20) and dropping the second last term, we get the thesis.
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O
Therefore we have proven that

T
| J1A V™) — Ab(Um(@cvm - Gen) dx s > 0
0
and assuming now 7 to be an element of P™ we have

T
= [ v + Ve — £V n) + AK0)@V — Bem)dxdt > 0.

We now want to pass to the limit as n — oco. This does not present any
problem except in the second term where it is necessary to verify that

the functions V;?V™ converge strongly in the Lfi—gﬁ-norm, since VV™ is in
L2260, T; L**24(Q)) and it converges weakly in this space. Indicating p =

(2+26)/(1 + 2u)
VeV = VibeVillzezey < IR = Vi)V lloqeey + IVa(V™ = W)l zozey <

< IV = Villzoo(zan) Vi | oe(zasy + || Vil z2n(any | Vi — Vil z2p(z2r)

and, since 2p < 4, the right side of this inequality tends to zero as n — oo.
Therefore

T
- /0 /{gatv; + VidkVi = £)(Vi = 1) + AE(Vn)(8Vi — Gmr) dxdt > 0. (4.21)

Inequality (4.21) has been prbved for a function 1 from P but it is also
valid for n € J;fz#,z. If we add it to inequality (4.19) with & = V — 7 and
n=V—-e,e>0and { € -];-’:2#,2; we get '

T
/ /[B," — AK(VV — eV¢)|0ets dxdt > 0.
o/n
Therefore this inequality, due to the fact that
AF(VV - eVE)Bkls =
= A[(VV)B&s + [AF(VV ~ €V¢) — AHVV)8ets < AH(VV)Bee,

1s valid for an arbitrary function ¢ and, after ¢ — 0, since -]21-’:2#,2 is a linear
set, the equality sign holds. Therefore (4.19) coincides with (4.18) with
® € Jytaun

T
//(atv +V;8;V)® + (v + C||VV|P*)VV -V dx dt —
0J0
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- ; / %@hwahvaj@ dxdt + | T/ﬂfcb dx dt

which is the definition of generalized solution of our problem.

O

4.4 Uniqueness and stability

Without further assumptions we are able to show uniqueness of our solution
in L*(0,T; L*(Q)) N L*(0, T; Wh2+2#(Q)), stability and, with an assumption
on external forces f, the fact that the L?(Q)-norm of the solution tends to
zero as time goes to infinity.

Theorem 17 (Uniqueness) Under the same hypothesis of ezistence theo-
rem on A, problem (4.1) possesses no more than one generalized solution in

L*(0,T; L*(Q)) N L2(0, T; Wh32+(Q)).
Proof: Let U = V' — V" be the difference of two solutions of (4.1) in
L>(0,T; L*(Q2)) N L3(0, T; Wh+2#(Q)). Tt must satisfy, in a distributional

sense,
BT — B [AK(VV') — AR(VV")] + Vio,v! - V', V" =0,
with U(0) = 0. We multiply by U and integrate over (1 to get
B, U2 + 2 fflA"(.VV’) — AF(VV")|8,U dx + 2 A U;6,V'Udx = 0

and, using the property of A, we arrive at

Gl |32 + v|| VU2, < 2 < (4.22)

/nta,-V’de

< U2 Ul IV | 242 < el Uzl VU |52 | TV as2n <
’ 14
S C“U“%z”VV “%2+2p + §HVUH%2

Now we can integrate (4.22) in time and using Gronwall lemma 1 we get

U=0.
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a

Theorem 18 (Decay) If C satisfies (4.5), if f is in L*(0, +00; L%(Q)) and
15 vanishing in L*(Q) as t — +oo, if Uy € L*(Q), then the L*(Q)-norm of
our solution of ({.1) tends to zero as time tends to infinity.

Proof: We multiply (4.1) by e and we define W = Ue®. Then we multiply
by W, integrate over € and use Holder inequality

SOW |2 = E|W |2 + v VW2, + € JIVUIP VWP ax<  (4.23)

- A2
< |Ife|lze 2+ — 2 dx.
< el Wil + - [IVU1 VWP ax
When 4 = 0.5 this side of inequality becomes
< SIS + W + o [T W dx
— e L 2y Ja ’

while when p > 0.5
C —,
< S 1™ 4 | YW+

+ (o) e () oo wiea+ Livwi,

and, if we take ¢ and € small enough, we get

SWllze < cllflIZe*. (4.24)

Since the L?-norm of f goes to zero with time, for each € > 0 thereis a 7
such that for every ¢ > 7; we have ||f]|z2 < &.
Integrating (4.24) in time we get

IW@OIZe < IW ()]s + ¢ /t!jf(S)Hf;ze%’ ds

IU@Iz: < e [I!U(to)llize%“ + c/tfif(S)Hize%’ ds} <

< N0Gaa) e e [ ()l e 502 s,
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Now we take ?o such that U(¢o) € L*(2) and such that o > 71 and we obtain

- -1 L7 8=
IU()IE: < UG39 + crem23— o] " =

c s=tp
—2g(t~ CcE —28(t—
= Ut} e ) + 2 (1 = o2 ).
Now if % is large enough, t > 73, we have
[UG)[I72672 ) < e Vi
and for ¢ > max(7,7;) we proved that

U@z < ce.

O
Corollary 4 (Exponential decay) If f = 0 we easily have
U@z < ||Uol|z2e™.
Theorem 19 (Stability) Under the same hypothesis on X of ezistence the-
orem, two solutions V' and V" in L*(0,T; L*(Q))NL3(0, T; W 2+24(Q)) with
different initial data Vg, Vy' and different external forces f' and f" satisfy
V! = VVllimiaay < IV = Velzm exp Ve, Vi £ 5,9, T),

Proof: We call f = f' — f” and U = V' — V". In exactly the same way as
uniqueness theorem 17 we get

, c
8V + 2| VU2 < U VY Paran + 11 £12 + 26| VU2
which implies
1Ulz2 < Vollzs exp (el fllzs z2) + ellU[Zoo(zn) | TV 22420

and, thanks to estimate of V’ and V" using initial data, we get the thesis.

a
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Corollary 5 If ||[VV'||peo(0,400512) < av for a small enough, if (f'— f") is in
L0, 400; L%()) and is vanishing in L?(Q) as t — oo, then the difference
V' — V" decays to zero as time goes to infinity.

Proof: Estimating the convective term as

[P < vV IO 90, < a9V vois,

and taking a < 1, we have
1Tl L28:l|U |22 + €| VU2 < || fllz2 U] 2
Therefore
i
IV! = V"llze < 1IV5 = Ve'llzse™ + [ fllzee™ dr
and the thesis follows.

O
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Chapter 5
Numerical solutions

In this chapter we are going to show some numerical results concerning the
previously presented models in a two-dimensional square cavity. We are
going to use a finite-element method to spatially discretize our equations
and a three-step splitting scheme for time advancing with divergence free
restriction taken into account in the first and last step.

We looked for numerical resolution at various Reynolds numbers, ranging
from 102 to 10° and using Navier-Stokes equations, SF, EV and EVSF large
eddy simulation models. k

5.1 The numerical scheme

We show here only the numerical scheme for EVSF large eddy simulation
model. To have the numerical scheme for the other three sets of differential
equations, it is enough to neglect the appropriate terms. We just remind
EVSF large eddy simulation model (4.1) in its two-dimensional with param-
eter 1 = 0.5 version S

{ 2 1 2 1
U; +> _U;6;U; = —;aiP +>0;(v + ClVU|2)o;Ui+
Jj=1

=1

2 A2 )
J — Z 6_.,- [g@zUiazUj] + fi 1=1,2 (5.1)

gi=1

2
Z 6_.,'[]_.,' =0,.
7=1

81
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2
Upa = Usp  Uj=o = Up ZaonJ' =0 Uyjsn = Usajs=o;
j=1
where 7 is usually taken equal to 6, A is usually taken equal to the grid size
and C is usually the square of the grid size.

We start by introducing the three-step splitting scheme proposed by
Glowinsky [18] and analyzed by Klouéek and Rys [21], where our problem
is splitted into three steps. In the first and the last one we take the viscous
and eddy viscosity terms a-implicit and S-explicit (8 =1-a, 0 < a < 1),
convective and space-filtering terms are taken explicit and pressure term fully
implicit. Divergence free restriction is taken also into account in both steps.
In step two the viscous and eddy-viscosity terms are taken B-implicit and
a-explicit, convective and space-filtering terms are taken fully implicit and
pressure term explicit. Step two is not divergence free. Introducing discrete
spaces Viy and @y

Vig = {vn € (H,(Q))*|vax € (P?)*VEK € 7},

Qn = {'Uh € L?,(Q)]vth € IPIVK ¢ Th},

where 7, is a triangulation of Q, L2 is the space of L? functions with a
vanishing average over {) (this last choice is to remove the degree of freedom
in the definition of the pressure), the scalar product (, ) of L3(Q), 6 € (0,0.5),
0y = 1 —26 and At is the time step, we have to solve a linear Stokes problem,
a nonlinear Burgers problem and another linear Stokes problem. They are:

First step: Find u™*® € V,, and p"*® € Q) such that V¢ € Vi and
Vi € Qn

(40 + o[y + € T, Vo) — (0, 0id) =
= 9—27(”?7 $i) — ﬁ( v + ClIVu||] vz, Vqsi) — (WOl )+

22
+5 (00, 0360) + (777, 60);
(O *®,9) = 0;
Second step: Find u™'~% € Vj,, such that V¢ € Vi
1

G000+ B([v + CIVarl [ Vurt=, v4,) +
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32
2y

(u*?, ) — a([u + C||Vur|| Vup+e, v¢,-)

+(E™, 0:8:) + (7710, é0); (5.2)

Third step: Find u™t! ¢ Vag and p™ti € Qn such that V¢ € Vi and
Vi € Qn

52—25(14?“, ;) + a( v + Cl|Vur||| vt v¢,-) — (p™*,8:4;) =

+(u7}+1—06ju?+1—6, ¢1)

y (alu?+1-ealu;_t+1—6, aj¢i) —

1
NN

= 6_2_25@?“-6’ ;) — 5([,, + CHVU"H]Vu:‘H—o, V¢i)+

AZ
—(upt P00, 60) + Z(alu?ﬂ_e@lu?ﬂ_o, 9;¢:) + (f11, i);

(Of*,9) = 0.
We choose triangular elements with velocity nodes on vertices and in the
middle of each side and with pressure nodes on vertices. Velocity components

are approximated with parabolic piecewise approximation, while pressure
with linear piecewise approximation.

+ velocity point

O pressure point

This choice of Taylor-Hood elements satisfies the compatibility condition of
Ladyzhenskaya-Babuska-Brezzi (LBB) to avoid spurious modes (see Quar-
teroni and Valli [38, sec. 9.2.2])

KerBT = 0,

where B, = (div¢™, ™) is the My x 2N, -matrix of L? scalar product of
divergence of velocity test functions and pressure test functions, where N is
the number of velocity test functions degrees of freedom and Mp, the number
of pressure test functions degrees of freedom. Having satisfied LBB we do
not need to use any penalty method to solve our two Stokes problems.
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LES discretized model is now reduced to two symmetric linear Stokes
systems of 2Ny + M} equations in 2Ny + M unknowns and a nonlinear
Burgers system of 2N, equations in 2N, unknowns with positive definite
and symmetric linear part.

We could solve linear systems using Gauss method, since, if time step
is constant and if we do not use eddy viscosity, we have to do only one
triangular factorization (which has complexity O(n?®) operations) for every
grid we use and then at every time step we just have to solve two triangular
linear systems (with a complexity of O(n?) operations). However we choose
a conjugate gradient method which converges, in our case, very rapidly.

The Stokes problem can be expressed in matricial notation with

{ Au+ Blp = f (5.3)

Bu =0,

where A is symmetric and positive defined and thus its inverse exists and is
positive defined. We therefore obtain pressure p solving

BA™'BTp = BA™'f

with conjugate gradient method since BA™! BT is symmetric and positive de-
fined. We note here that during each iteration we have to solve an additional
linear system in order to invert A~!; we solve it using a conjugate gradient
method. Finally we get velocity u solving

Au=—BTp+ f.

We solve nonlinear Burgers system using a modified version of conju-
gate gradient method (MCG) with Polack-Riebere strategy to minimize cost
functional

J(v) = -;-\/< A-1F(v), F(v) >,

where A is the matrix representing the linear part of (5.2) and F the is the
nonlinear part. Details can be found in Girault-Raviart [17]. Defining F as
the right part of (5.2), MCG is

MCG step one: Given u™ € Vi, find 2™ € Vjp such that

@{A—t(z:", $:) + ﬁ([u + o[ vur|]vap, v¢,») - %1&(@, bi)+
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+8( [y + Clvar | vap, V) + (uFOnp, 6+

A2 m
—5(61u;"a,uj , 0i8:) — (Fi, 6i);
MCG step two: Find g™ € Vi such that

6, At(g’ :¢)+,B([V+C“Vunu}v‘gz ,V¢1) =

= GblAt 2", ¢i)+ﬁ<[v+0]|Vu"[” 2] ,V¢,) + (u0;¢: + ¢;0;ul, 2™)+

32
—%(&uf'al(ﬁj + 3l¢i31u;-", 0;2");
Polack-Riebere variant: Evaluate

m_ (Vg —g7""), V)
(Vg vgrt) 7

o

VYm > 1

g_g +O_-—m1

Ym > 1;

MCG step three: Evaluate first terms of the cost functional to be mini-
mized

zZ

76m) = 36l + clvwilom, o) + e, J

D) = 3|8l + cIvert]agr. oar) + o)

MCG step four: Find v™ € Vj, such that

gt 9+ + 1w v, vs,) =
_ @iTt ", &) + ﬁ([v + CHVu"H}V@m_; V¢i)+

ma =m —m m AZ ma —m =m m
+(u70;g" + g7 Ojul, bi) — g(alu; 035" + g o, 0;45);
MCQG step five: Define

2
[t:ﬁna ] = (2§_‘, ng ’ ) —(261.6:"615;"7 a_‘i ) ):.
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(v, o) + 67, 277,

1
2 mY __ n ,m 9. m
D2J(w) = B([v + Vw607 + 5
DAJ(w™) = 3[t™, vT);

2 372

MCG step siz: Find w™ € Vo such that

1
VAN

(w, 6 +B([v + CIVW ) Vur, V) = [, 84

MCG step seven: Evaluate the cost functional of u™ — pg™, which is a
fourth order polynomial in p and is therefore equal to its Taylor fourth-order
expansion

1
D43(u™) = B( [y + OV, 0l ) + 5wl ul) + (57,7,
s AL

2

J(u™ = pg™) = J(@™) ~ DI(uw™)p + DI o+
3 4
3 m ,0 4 m ,0
— 4D L.
D J(u )6 + D*J(u )24,

MCG step eight: Find, the positive root p™ of

dJ

Y f,m _ mom =0:
dp(u pmg™) = 0;

MCG step nine: Evaluate new approximation of solution

u™tl = ™ pmgm,

As initial condition the value of velocity coming from previous Stokes
step is taken, the algebraic equation of step eight is solved using simply the
unweighted Newton method, while the four linear systems at each iteration
can be solved using Gauss method for band-matrices, since, if At, § and «
are constant in time and if eddy viscosity is not used, they are associated to
a matrix which remains the same at every iteration of MCG method and at
every time step. However we experimented that conjugate gradient in our
case 1s much faster and less memory consuming.
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5.2 Test problem

Our test problem is the so called square-cavity. We take as domain ) a
square of side one, therefore its boundary 8¢ are the four sides. We take as
starting velocity zero and as boundary velocity zero on three sides and (1,0)
on the fourth side, which represents either a moving wall or an uniform flow
independent from our solution. This leads to a discontinuity in boundary
velocity as the first component of velocity on the corners of the fourth side
can be one or zero.
10

(0,0 (0,0)

(0,0) X

To overcome this problem we can take the first component of velocity on the
fourth side as a concave parabola but this did not give any advantage in our
numerical experiments.

Another irregularity is represented by the starting velocity which is dis-
continuous on the whole fourth side. This could be solved by starting with a
velocity different from zero, but from the numerical point of view, this dis-
continuity does not cause serious problems since we will be more interested
in the stationary solution.

We usually take as final time the time when stationary solution is reached
using a stopping test which requires that the value of velocity in every point
does not change more than 10~2 times the maximum value of that velocity
component. We use as a comparison tool horizontal velocity profiles on the
vertical line in the middle of the square and vertical velocity profiles on the
horizontal line in the middle of the square. In this way we can compare our
results with the results obtained by Ghia [16] for Navier-Stokes problem using
a very thin mesh up to Reynolds number 10, 000. For larger Reynolds num-
bers we will instead present a graphical representation of the velocity field
using arrows and the streamfunction sign (negative values in gray and posi-
tive ones in white), which show very well the vortices. The streamfunction
1s a scalar function ¥ obtained solving

AV = 02U1 - 01U2 Vz - Q
¥=0 Vz e o
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We use a triangulation with 800 right-angled triangles:

Time step At is taken, unless otherwise noted, equal to 0.05. v is equal
to 6, X is equal to the average of Az and Ay while C is Cy)2, where the
value of Cy depends on the simulation.

The boundary condition for horizontal velocity on point (z,y) = (0,1)
and on point (z,y) = (1,1) can be chosen equal to zero or to one. If we
state that velocity be zero on these two points, we are automatically stat-
ing that horizontal velocity between points (0,1) and (Az,1) and between
points (1—Az,1) and (1,1) be different from one. If we state that horizon-
tal velocity on points (0,1) and (1,1) be one, we are automatically stating
that horizontal velocity between points (0,1 — Ay) and (0,1) and between
(1,1—Ay) and (1,1) be different from zero. In our numerical simulations we
will experiment both conditions and show that our solution depends strongly
on this condition.

Our program has been tested on several a priori-known analytical solution
to check for errors and to show its capability to reach stationary solutions.

5.3 Results for low Reynolds numbers

At low Reynolds numbers we simulated the results of Navier-Stokes equations
and SF turbulence model since it is worthless to add an eddy viscosity term
when velocity gradients are small.

We start our simulations examining the result of our test problem in the
Re = 100 laminar case up to stationary time 8.7 seconds. Here Navier-Stokes
equations and SF turbulence model give exactly the same results, with a very
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slightly better’ result for Navier-Stokes equations. However, the most critical
difference lies in the temporal step At which was taken equal to 107! seconds
for Navier-Stokes equations and 102 seconds for SF turbulence model. This
is due to the fact that our nine-steps method for Burgers’ problem does not
converge when the strong nonlinear SF term is present if At is not small
enough.

Re =100
®  Ghia
——simul

Velocity (nvs)

0,0 02 0.4 0,6 08 t0

Length (m)

Figure 5.1: Velocity across symmetry of cavity in the Re = 100 NS case.

In the Re = 400 case, Navier-Stokes equations give also good result at
stationary time 38.8 seconds with a time step of 2:1072 seconds. However,
even reducing the time step to 10~ seconds is not enough to let SF turbulence
model predict our flow after the critical time of 0.8 seconds.

In the Re = 1,000 case Navier-Stokes equations reach the stationary
solution after 36 seconds of simulation with a time step of 1072 seconds. The
result is in good agreement with Ghia, however there are slight discrepancies
when velocity reach its maximum and minimum values. SF turbulence model
is not able to work anymore at this Reynolds number and therefore we are
‘not able to confirm the claim of Cantekin and Westerink [7] that SF model
works in good agreement with Ghia up to Re = 3,200, at least with our
algorithm. For low Reynolds numbers SF model works, but in this case the
pure NS system still gives good results and 1t is simpler and has a faster
algorithm than SF.

'In our experiments we take Ghia’s results as the true solution and therefore better
means more similar to Ghia’s calculations.
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Figure 5.2: Velocity across symmetry of cavity in the Re = 1,000 NS case.

5.3.1 Comments

Our experiments show that Navier-Stokes, as it was already well-known,
can be solved with good results for small Reynolds numbers. However, SF
turbulence model which, according to Cantekin and Westerink [7], should
lead to better results, did not prove worth the effort. In order to deal with
the highly nonlinear turbulence term we had to drastically reduce the time
step even in cases when our solution of Navier-Stokes equations is in good
agreement with Ghia’s data. This is due to the fact that the term added
by ‘SF model does not have any good numerical nor analytical properties
as we showed in Chapter 3, where it does not contribute to any solution
estimate. However the poor results obtained with SF model can instead be
attributed to the complicated time advancement scheme which works very
well for nonlinear convective terms, but has never been tested with stronger
nonlinear terms.

5.4 Results for moderate Reynolds numbers

At moderate Reynolds numbers we simulate the transition between laminar
and turbulent flow. At this range of numbers SF turbulence model does
not work anymore and therefore we compare the results of Navier-Stokes
equations, EV and EVSF turbulence models. From now on we will always
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use a time step of 1072,

In the Re = 3,200 simulation of Navier-Stokes equations continues to
work, but gives very inaccurate results. However, if we change the boundary
condition on the upper angles from horizontal zero velocity to horizontal
velocity equal to one, we obtain a much more reliable result at stationary time
of 209 seconds, even through absolute velocity is underestimated. If we use
EV model, we obtain slightly better results at stationary time of 117 seconds
with the latter boundary condition and with C = CoAz - Ay =10"2Az - Ay.
If we use instead Cp = 10~2 we obtain again underestimated absolute velocity
which probably is due to the same reason as the previous analogous result.

1,0+

Re = 3200
®  Ghia
—— simul

0.8

Velocity (nv/s)
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0,0 0,2 04 0,6 08 10

Length (m)

Figure 5.3: Velocity across symmetry of cavity in the Re = 3,200 EV case
with Cy = 1072,

In the Re = 5,000 case Navier-Stokes equations with the former boundary
condition diverge after 169 seconds, while with the latter boundary condition
they produce a slightly unstable result (it does not reach stationary state after
266 seconds of simulation) but in quite good agreement with Ghia’s data. If
we introduce an eddy viscosity with coefficient Cy = 10~2 we obtain the same
result. If we try to use the EVSF model, in order to avoid divergence after
some seconds of simulation, we have to take Cy = 107!, which is still much
less that what is suggested by existence theorem in Chapter 3 and is exactly
what is suggested in most LES literature. With this coefficient we reach
stationary state at time 44 but the results, due to the larger eddy viscosity
coeflicient Cy, are not in good agreement with Ghia’s data..
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Figure 5.4: Velocity across symmetry of cavity in the Re = 5,000 NS case.

If we put zero boundary condition on upper angles, we always obtain
overestimated absolute value of velocity.

5.4.1 Comments

Our experiments on moderate Reynolds numbers show that Navier-Stokes
equations are still quite good at predicting fluid velocity even through they
start to feel the effects of a slight difference in boundary conditions. EV
models here work more or less like Navier-Stokes equations and therefore are
suggested only to improve convergence or stability, but with coefficient C,
in the range between 107 and 1072 to avoid having a completely different
solution as we had when we tried to use the 10~! value suggested in most
LES literature. EVSF model suffers the same weaknesses as SF model: it
needs a large viscosity (a large eddy viscosity in this case) to work and it
does not give better results.

5.5 Results for high Reynolds numbers

In the Re = 7,500 case we obtain an EV model’s result in good agreement
with Ghia’s data when we take Cy = 1072 even if velocity are still a bit
irregular after 278 seconds of simulation.

In the Re = 10,000 case we obtain results in poor agreement with Ghia.
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Figure 5.5: Velocity across symmetry of cavity in the Re = 7,500 EV case
with Co = 10—2.

The best simulation is obtained with an EV model with Cp = 5-1072 at
stationary time of 63 seconds. The two vortices in the bottom of the cavity
join while this is not prescribed by Ghia’s data and we have no trace of the
vortex in the upper left corner. However we prescribe correctly the birth of
another vortex in the lower right corner. If we try other EV coefficient we
obtain similar, but slightly worse, results.

In the Re = 100, 000 case the eddy viscosity coefficient Cy = 10~2 does not
lead to a stationary solution any more. Therefore we work with Co =2-1072
(which reaches a quasi steady-state after 200 seconds of simulation) and

o = 5-107% (convergence after 66 seconds). The two vortices in the lower
corners have joined in the same horizontally stretched vortex, while another
vortex has developed in the lower right corner. In the former case we have
also another vortex in the lower left corner, but in this case velocities are
quite irregular.

The Re = 1,000,000 case is almost identical to the Re — 100,000 case.
It is worth noting that in both these cases the eddy which should appear at
Re = 3,200 and should be fully developed at such large Reynolds numbers
has only a slight appearance in our Cy = 2-10~2 case. This fact can be
attributed to the boundary condition on the upper left corner and on the
quite large horizontal space step we used.
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Figure 5.7: Left lower quarter of cavity in the Re = 10,000 EV case with
Co =5-10"2.
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Figure 5.8: Right lower quarter of cavity in the Re = 10,000 EV case with
Co == 5'10_2.

Figure 5.9: Lower half of cavity in the Re = 100,000 EV case with Co =
5-10~2
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Figure 5.10: Left lower quarter of cavity in the Re = 100,000 EV case with
Co - 5'10_2.
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Figure 5.11: Right lower quarter of cavity in the Re = 100,000 EV case with
Co =5-1072.
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5.5.1 Comments

Our experiments on high Reynolds numbers show that EV models here work
quite well, at least up to Re = 10,000 where we can keep the value of eddy
viscosity coefficient low enough. In any case, EV models work with quite
small eddy viscosity coefficient compared to the ones suggested by most LES
literature (usually 107! or larger). Unfortunately we cannot compare the
results we obtained, since Ghia’s results are no more available for comparison
for Reynolds number larger than 10,000, but they are quite believable since
they show the growth of the two corner vortices and the birth of another
vortex. There are almost no differences between the Re = 100,000 and the
Re = 1,000,000 case.
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