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In this worlkk we show the exlstence and urigueness in Sobolev spaces of the solution of
Large -Eddy Sirmulation turbulence model for any time provided that initial data and
exiernal forces are regular andi : srmall enough. We alse show that if external forces
are time-periodic or time- mdependent then the solution 1= time-periodic or time-
inclependent. )

1 Introduction

ThlS paper deals with various aspects of Large Eddy Simulation (LES) turbulence
model This model has a more rigoreus mathematical basis than the usual turbu-
lence models which use Bousmnesq $ assumption such as k- model.

' As will be shown in Sec. 2, ILES model averages Navier-Stokes equatlons over
i space using a Gaussian spatial filter and then approximates nonlinear térms using
,a Taylor expansion with respect to the filter width. The resulting equations for
averaged quantities are like Navier-Stokes ones but with a nonlinear sstond-order
term i
In Sec. 3 a global exmtence theorem for the solution of LES model is given
p1ov1ded that initial data and forces are small enough, We use a standard fixed poing
wtechmque (Schauder’s theorem) for nonlinear problems, introducing a continuous
‘map from a convex compact set into itself. In order to deal with the high order
‘nonlingar term introduced by LES model, we have to use norms on Sobolev spaces
«of high order and accept 1mt1al' data only with a small enough H 3(ﬂ)-norm n
4131113 way we can show that thelnew function is still in the starting compact set.
‘The solution found is then in CO([O 71 H3())N LA(0,T; HY(Q)), with £} an open,
connected and bounded subset df R® with regular bhoundary,

In Sec. 4 we provide a umqueness theorem for small solutions and:show the
emstence of periodic asympthotlcally stable solutions and therefore the exnstence of
sta.tlonary solutions for external} forces independent of time.

'\
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580 P. Coletti

2. The Large Eddy Simulation Model

In this section we are going to show how LES model is built, starting i in Navier—
Stokes equations and using filtering techniques together with Fourier 1sansform to
spatially average velocity and pressure. We will not go in depth, which can be found
in Catenkin et al? and Aldama.’

Navier-Stokes equations for an incompressible, isotropic, Newtonian fluid are

3
1 ,
Bnue+zug'3jui:r/.&ua—;&-P+fs Vzell Vi>0 i=1,23

a=1
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Y ou;=0 VYzeQ Vtso,

=1

where & is the derivative with respect to time, w; the velocity component, 8; the
derivative with respect to x;, ¥ the kinematic viscosity, A the Laplacian operator,
ie. Zfﬂ 8;3;, p the density of the fiuid, which is assumed to be congtant, P its
pressure and {2 an open, connected and hounded subset of B* 'or R® with regular
boundazy.

LES turbulence model is now introduced, averaging velocities, pressure and
equations on space and not on time as it is done in models which use Bousinnesq
assumption like s~ model. Following Catenkin ef al.? we apply a homogeneous low
pass filter to Eq. (1) using the following notation

Tz, t) = fR Glo )P e’ 2

where G is the isotropic Gaussian low pass filter

Glz) = (:—r)%;lgexp [— 7(?—3)2} . (3)

According to Aldamal the spatial fiter width ) can be chosen in applications equal
to twice the computational grid size and the free parameter v equal to 6.

Each term of Navier-Stokes Eq. (1) is now filtered and, as in every classical
-approach to turbulence, we decompose velocities and pressure into a sum of resolved
scale comporient %j; P and of subgrid scale component u}, P'. Nonlinear terms are
expanded as

Ty = Wik + Wit + UG, + g (4)

Aldama® developed the following approximation technique for nonlinear terms:

we apply convolution theorem to obiain

{#mw} = {cmw}{za,w}, )

Bristence for Large Bddy Simulation Model 581

where {.} denotes a Fourier traﬁ?sform and k is the wave number vector. Evaluating
{G(k)}, expanding it in Taylor series with respect to A and substituting it into (5)
as in Rel. 2, gives

@} = {ua;) - & {3} + 0. (8
Using the proprety of Fourier transform
—kk {T:u;} = {d0mm;)

and taking the inverse Fourier tiansform, gives

o )\2 o .
Wity = W + E;a;ammj + O(A%). : (7)

Applying the same method to the other right-hand side terms of (4) leads to

S |
Tilly = Wiy + 5}: Z 31ﬂ'iatﬁj -+ O(Xl) . i (8)
. =1

Indicating # and P with u and P, space filtered Navier—Siokes equations are
now :

E: X 3 ‘

i 2 .

Gy -+ Zujﬂju,- = vAu,; —EB&;P - Z a; [%@uiamj] +hY O()m) ,
I=1 ; Ai=1 :

s (9
> du; =0,
F=1

which, together with boundary co?lditions 4jan = 0 and initial conditions Yt=0 = g
give the LES model. Clearly, the fiinitial datum is required to satisfy

; ‘
> Bitie; =0, Uolag = 0- (1)
=1

3. Global Existence Theorem:

In this section we are going to show that under compatibility conditions on initial

and boundary data, if the initial véluea of velocity and external forces are small and -

regular enough, solution of LES model exists in ([0, T); H3())NL2(0,T: HYa)
for every T' > 0. : ‘
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Notation. From now on we will assume:

every repeated index on the same side of an equality or inequality is summed;{
density p is equal to one; , , -
the expression Dul?y means & (%;ij@mi) = %Btuja;ajui. Bvery calculation
will be made on the former expression only for simplicity of notation,

* ¢ is an appropriate positive constant depending only on the domain §;

S will be spiit as a sum of a gradient, which goes into the pressure term, and a
divergence Iree field tangential to the boundary, which will still be indicated with
I{;(Q) is the Hilbert space of measurable functions whose square has a finite
integral over Q;

H°(D) with s > 1, 5 an integer, denotes the Hilbert space of functicns in L*(£})
with distributional derivatives up to the sth order in L2(2) and is called Sobolev
space;

H'*(882) is the space of the traces on the boundary of functions in H* (). HL()
is the space of functions in H(£2) with null trace on the boundary. When FH*(£1)
with ¢ > 1 s referred to fluid velocity, it is always H*(Q) n ",

a Scbolev space with index div means that its elements are divergence free;
&g means

Opttp 1= —aug Vg + vAug — Du0D2u0 + f!t:(} - Vag. (11)

Since initial value of pressure py is not known, we have to.get it by applying
operator V to differential Eq. (11)

A2 .
Apg =~z — Zajalﬂma!ai“jo in £2, (12)

where boundary conditions are obtained multiplying Eq. (11) by the normal to
the boundary »

Bnpo = VA'\'LO N — DMODZHU ‘n on.d0.

In order to assure existence of pywe have to prove that

2
f —ainjgaju,‘n - A—aja,gumﬁgaﬂl.jo de :f vAugn — DugD2ug ndx. (13)
0 2y a0
Adding the integral over @ of »divAug, which is zero, to the left-hand side of (13)
and integrating by parts, using the conditions (10) on nitial datum, we easily get
the right-hand side.
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By using a typical tecknique for nonlineay problems the theorem will be proved
showing the existence of a ﬁxéid point for a suitable continuous map. . Namely, we
build a continuous map whiclf, starting from an initial function w, gives another
funetion w, in the same convex and compact set and such that, if & = w, we have
found the solution of our problem. In order to have every u in the s@me starting
set as w, we will have to reduc{} the appropriate norm of initial datum and external
forees. Since our fixed point map uses a differential equation to find the new
we will prove that a solution exists and is unique using well-known results about
linear nonstationary Navierw-StékeS problem. Once divergence free veloéity is found,
pressure is recovered by meansiof orthogonality results. ‘

Definition 1. (Compatibilit;y conditions) We say that the initial datum u, €
H3{Q) satisfies compatibility conditionsif uo and 8,1y have null trace on' the bound-
ary of  and div ug = 0.

These conditions are used to a.s;éure that LES model is also satisfied at initial time

In order to estimate the L2(H2)-norm in terms of the HYZ*)-norm of the solution.

Theorem 1. (Existence) There epists a 6o € R* such that for every 6 € (0,6] if
we assume that

{a) R is an open bounded comnected set of RS with regular boundary;
(b} initial condition Ug satisﬁes compatibility conditions,

(c) fluollgs < 6% :

(d) Nfllezgmey < 6% and N8 fll p2ga2y < 6%

tien the solution. of LES (9) esiits in CO([0, T); H3(0))n 12(0, T, HAS)) for fuid
velocity and C°([0, T}; H2(Q)) NLL2(0, T; H3(Q)) for pressure. :

The proof requires several stéeps. Let us start by defining the followiﬁg set
A= {'w 0, T x 0 — R wfn:n =uy,
lwlizesarsynzeersy <6 A 8wl Lo (riynragmsy < 6 A 18 8swi| pagrey < 5} ,

with & positive constant which v@gill be defined later, and build the follov:ving map,
which from w gives, after solvingﬁ a differential problem, u:

G+ Vp— pAu = —wVw — DDy 4 f
divau=0 : (14)
u[m =U, %!t:ﬂ =Uug .

We define ' = vy — DwD%EJ + f.
Let’s introduce the orthogonal projection

P:Lz(n)—»Lﬁw(ﬂ)}:{ueLﬂ =0 Adive=0}, -
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We want to find » & L2{[0,T], H,,(02)) such that

{ Hu — vPAy = —P[wV'w + DwD%u] +f = F{t), (15)

ult:O =g

Due to the orthogonal decomposition L2(t) = L2, ()&, where G = {v e L3(Q) |
v=Vq A g H'(Q))}, this problem is equivalent to (14).
We need, at first, the following results:

Lemma 1. If hypotheses of exisience theorem are satisfied, then | 512y < c§®.

Proof. We start with the L2(Z?) norm of F and use the fact that, since P is a
projection, for every function ¢ one has || P@lir: < [fll 22

T
&a+Lfmmﬁ

T T T 2

f IPO)2.dt < / V) Zadt + fo | DwD
0 0

4

SCHWH%E(HE)”w”ix(m)+C||w”%2(fra)“w||f:oo(m)+l|f||%e(f,2)565 .

Moreover, the time derivative 8, F satisfies
T T )
et < [ joswvuiaar
0 i

T T
+ / 118: (P D?w) [Ladt + fo 00 f112 adt
0

< CHBWH%M(H)||w||is(f-.:8} + C||w|f,25==(H3)||3tw”iz(m)

+ ”33]‘”%2(1,2) = cbt . O

Lemma 2. If hypotheses of existence theorem hold, then ||Qup] g < e62.

Proof. The true meaning of 8,19 is obviously the one given under Notation, there-
fore, from (12) we have

IVpollan < ellGusodsuiolica + cll D*ug DPugil2 + Y
< cllallfys + ellwollys + eliuollus < 62,

‘where' § = vAug - — DugD%uy+ #; Tve: the boundary value of Neumann problem
extended to the whole domain © with # the normal to the boundary extended
to Q.

Finally

g = —wugVig + vAug — Voo — DugDzuo + f|t=0

2
9ol < clfuollfys + clfwallrs + el Vpollm + cljugla + CIifL=ﬂ||Hn <. O
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We are now in & position to prove:

Proposition 1. Under hypotfieses of ezistence theorem, o solution of ﬁ‘mblem (15)
exists in CO{[0, #]; HS(Q))OLQ(P,T; HY(Q)) end ]|6tuf|Lm(Hn)+[|8¢8¢u|[l;n(,ge} < 6.

Proof. Since problems (14) izlmd (15) are equivalent, using a result in Chap. 4,
Corallary 2 of Ref. 4, if ¥ ¢ HY(0,T; L2, if compatibility conditions hold and if
o € H'(Q) then u exists and is unique in Co{Jo, T H¥() n L2(0, T HA)),

Now, deriving Eq. (14) with respect to time, multiplying it by 8,8,4 and inte-
grating over {1, we get :

10Dul2e — v / PAG - B,0yudy = / O,F - 8,6 dz,
o n

¥, 1
”a;atu”%g -+ 531: ||8¢Vu”_%g S E“Btag'u.“ig + ZE“&FHEQ .
Therefore, using Lemma, 1, taking e = 1/2 and integrating over [0, T),
18:BreliZa 2y + w0l 12y < erllBpu|in + NOeF| ey (16)
Using compatibility conditioins and thanks to Lemma 2 we can state that

“C')g'lt”Loa'(Hl) + ”{%64311,”1,2(1,3) < cb%. ‘ o

Proposition 2. ¥ § is small e?i?,ough the set A is not empty.
Proof. We take the H1/2(30) function

- _ g — _
’lj) = (flt=0 n D’H,QD Up ugVug Vpn)|aﬂ
and extend it t0 a function ¥ in C*([0, 7]; B\ ()} n L2(0, T H(£2)), namely this
function must satisfy (Tle=0)|aq = 9. This can be done thanks to Vol, 2, Chap. 4,
Remark 3.3 of Ref. 5 (with 5 =0,m=1X=H2 and ¥ = L2}, which, in
our case, states that the map which extends HL(0) functions to L0, Ty H2(O) 0
HY0,T; L*(9)) is surjective. Wé then consider the following heat problem
BU —vAU = W,
U'i‘.:ﬂ =t U]an =0
and observe that its solution belongs to CO([0, T); H¥(Q))n L2{0,T; H4{)) since
uo € H3((), ¥ € ¢%fo, T}; B! (WINLX0,T; H3(Q)) and compatibility conditions
(those for the heat equation, noti; those in Definition 1) for U,y and (&L Jje=o =
Wz + vAuy are automatically ?xatisﬁed from our cheice of . Moreover, due to
the bound on u; and therefore oni¥, choosing 6 small encugh, we have that I7 € 4.
0O
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Proposition 3. The function u ebtained from (14} belongs to A.

Proof. Since we have proven that a solution u for problem {13) exists and that
problem {15) is equivalent to (14), there exists a solution u,Vp of (14). Observing
that dyu--vAu—F € L0, T; H~1(M) implies Vp € L0, T; H~1(f)), this solution
satisfies the Stokes problem

PAY =~ Vp = o+ wVw + DwDiw - f,
diva=0, (17

If the term on the right-hand side of {17) is in H2(f), we have (p. 40 of Ref. 4)
lullas + [ Vplla < clifu +wVw + Dwb?w — filg, (18)
lellzrs + IVl e < ellden + wVw + wVw + DwDw — fl|g (19)
which implies
el oo garay + Vol posqary < ell@aullpos sy + 3o g2
+ el o zrey + ell fll Loy < 62

To have the same estimate on norm LE(H?), u and p can be seen as a solution
of Stokes problem

vABu — Vp = 8,00 + O, (wVw) +8 (Dwmw) —a,f,
div Bpu = 0,

Btulém =0.

Therefore we have

2’

Bcullze + 18Vl 12 < c”atafu + 8 (wVw) +8,(DwD*n) — 4,f

integrating this expression and (19) on [0,T) we get

IBeullzaiars) < ellOedeullragrsy +cliwl| Loga O] Loy

+ eliwllpee syl Bl zagrrey + el fl o (rey < 62,
Therefore

lelliagasy + 1Vl pagasy < clldseliragaey + cllwll o gy lwll pogaroy

+ellwll L mayllwllpagrsy + el fliagae) < 82
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Finally, if & is small enough, we have shown that

V€ O, T1; B () 0 L20,T; (),
fulli=iers; <6, Jullzegpey <6,
|f3au|fL°c§;Hl) S8, |Oeuhizanzy < 6,
8Bl 2oy < 6.
This means that codomain of ?ilap (14) is A. ; 0
Proposition 4. (Compactnéss) A is compact in COI0,T; H2()).

Proof. We observe that from {nclusion L2(I1%) n HY(H?) ¢ CO(H*%) we can state
that 4 C CU(0, T; H*(2)). From Ascoli-Arzeld, theorem (Vol. 1, p. 142 of Ref. 3)
A is relatively compact if and only if 4 is equicontinuous and for every ¢t € 10,7
the set A(¢) = {f(t) € H*(Q) |,V f € A} is relatively compact in H2(O).

Since in one dimension H? fiinctions are Hilder functions, then A is immediately
equicontinuons (Vol. 1, p, 142 of Ref. 3). Finalty A(#) is bounded in Hilbert space
H3{)) and therefore it is relatively weakly compact. Therefore, from {f,} € A(t)
we can extract {fy, } which converges weakly in H® to f. From Rellich theorem H3
18 compact in ° and therefore {f,} converges strongly in H? to f- This means
that A is relatively compact in C°([0, T); H?). '

To prove that A is closed,! we take a sequence ¢, € A which converges in
CU0, TN, HY(Q)) to ¢ We al‘i’-} going to use the facts that a bounded sequence
in a Hilbert space has a subseqiuence which converges weakly and that a bounded
sequence in L°°(X), with X a Hilbert space, has a subsequence which'is weakly”
convergent; in both cases the norm of the Nmit function is not greater than the

~ bound on the elements of the s{lccession. Since ¢, converges to & and 0,¢,

to 8,8:¢, in the same way we h:}ive the bound on time derivatives of ¢.. Therefore
peA |

Proposition 5. (Continuity oi.f the map) Under the same hypotheses of existence
theorem, map (14) is continuous in CO(0, T, HA(Q)).

‘Proof. We take a sequence w"“i; which converges to w in C%([0, T); H2(Q)) and is

bounded in Z°2(0,T; H3($2)) NLL2(0,7; H*(£2)). We want to show that the se-
quence u* created {rom w* by, map (14} converges to w in CO([0,T); Z2(02)) n
L¥0,T; HY()) and therefore, thanks to Lemina 4, it converges in CY(H2) and
this means that our map is cont:;nuous. b

We define v = w —w* and §* = v — ubk and we substzact differential equation
for u* from the one for 4. The result is

Bis* — vASH = —wVu + W Veoh — DwDw Dw* Dy, — Vp + Vi
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multiplying by &* and integrating over §2 we get
1 ;
58 HEz + vlls® |3
< f ‘s"v’“Vw|d.’m +/ ,skkav"!d:c
1] Q
+f 'svaszw]dx +f ,s’“Dkazfuk'dm
2 4}
L ells* lzellv®llm flwll e + ells® | flw* | zrafo® [ 4
+ells* allo® | 2|l gs + sl 2 | gra ) 0* | g
[y c s

< E“SL”_%z + 562“’0"'“%5 .
Taking e = 1/2 and integrating on {0, T, we have

B 1z eqmny + N6 3o () < 8|5 o g2y — 0. o

We can now conclude the proof of Existence Theorem 1. In Proposition 5 we

have proven that map (14) is continuous and therefore, since A is a nonempty,
convex and compact set in the Banach space CO([o, T); H#2(12)), using Schauder’s
theorem there exisis a fixed point u of map (14). *Clearly, .this fixed point is a
solution » of LES model, which is small in C([0,T]; H¥3() n L2(0, T, HAQ)).
The corresponding pressure p satisfies Vp e ([0, T]; HY())yn L0, T, HY(Q).

4. Uniqueness and Periodic Solutions

" Theorem 2. (Uniqueness) Under the same hypotheses of existence theorem, for

& small enough a solution of LES model uw € A is unique in A, while Vp s unique.

Proof. We define s = u — v, which satisfies
B8 — vAs = —uVu + vVv — DuD% + DyD%y — Viu + Vi,
dive =0, (20)
8J3=° =0, Sl@ﬁ =0.
I wemultlplyby s, illtéga'afé 0ve1 0 ‘;i‘nd.l‘ls;e”the fact that di{/ 8= C.we get
1
3 OullslZa + wllsliG
< f |Sj6jug's1'[d$ + Cf (|3¢3j6j6;ui5¢| 4 |3§ﬂj@($iajs1‘|) dz
Q o

< clislizzilullns +clisl (flullma + o)) .
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Integrating on {0, 7] and remembering that v and v are small in L0, T H3(52))
we can obtain

ls(eyl3 = + ”3”2)‘,2(!1'1) < Cf5|f3||%,2(H1) )
ls(alizs < 0. ‘
Unigueness of Vp follows from system. (20). : O

To have uniqueness of p a'f{_nrt‘.her condition on p must be imposed, such as

/pd:n:O_
[+]

Theorem 8. (Stability) Let b and u be two solutions in A with different initial
vakues. If 6 is small enough, Mé1 L2(Q) norm of their difference is controlied by the
L) novrim of the difference ofitheir initial values and decreases ezponentially with
time. '
Proof, Let s = v - u, We have

A8 —vAs = —-uVs - sVu — DvD?%s — DsD?u — V(p, — p,)
divs=0 : (21)
0.

S't=n =t — %o Sla:ﬁ =

We now multiply against s and fintegrate over 0
1 .
OullsilZe +vlls|} < C[HSII%zIIUI!Hs + lsllEn llelias + !ISII?pIIuHm] < el

laving integrated by parts the terms fov(Vs)sdzx and Jo Du(D2s)s dz. Changing
the value of ¢ we easily have for' § small enough

illslze + collslize < 0;

8
2 (e%*nsniz) <o;

() ~ wlt)fFe = s()13s < e™"}is{0)[3 = €% juy — uollZs - o

Theorem 4. (Periodic solufion) Let f be periodic of pericd T >:0 and let
hypotheses of existence theorem be satisfied with &% instead of 6. Then there exists a
periodic solution of period T' which is asympiotically stable and unique among any
other solutions whieh satisfy exiitence thegrem. ‘

Proof. If & is used instead ofi$, our solution is smaller than 62 and the initial
datum is smaller than §%.

We will follow here the appraach of Serrin.® Let 4 be the solution of LES model
with up as initial value; let’s define :

. (z) =u{nT,z) YnelN,;
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we want to show now that @, is a Cauchy’s sequence in L*(Q). Therefore we take
two natural indices, » and - m, with m > n and define

w(t, z) = (i + (m — n)T, 2).

"This means that w is a solution of LES model with initial value u{(m — n)7,z).
Thanks to stability theorem we get

(@) = w(®ze < ™ huo — w((m ~ m)T,2)||z2 < 26670
which, taking ¢ = nT", becomes

liw(mt) — u(nT)|

e = [lw(nd) — w(nT)|2, < 26=0nT

Therefore &, is a Cauchy’s sequence and @, — @ in L2(0). The function & is also
the weak limit in 53, strong limit in H* for every s < 3, in particular the uniform
limit of ®,. Moreover, since the weak limit of a succession in H} remains in H}
we have that compatibility conditions on 8:®, which are

2

P = —BVE +vAD — DED*E + f't=0 ~Vpg,

where pg satisfies

)‘2
qu, == —B.;ujgc’ijum - ﬁ@j@guioazaiujo in £2
Gnpe = vAug - n — DugD%u -0 on 80 s

are satisfied for every ., since they are solutions of LES model calculated at dif-
ferent times and f|z=0 = f|t=nT, and therefore they are also satisfied for . For

the same reason, the divergence of & is zero and the H3{))-norm of ® is smaller
than cé2.

We now have to show that a solution v having @ as initial value is periodie.
Let’s define -

Bt z) = ult +nT, 2);

since f is periodic, % is a solution with initial value &, () and therefore
(@) - 3(1)li32 < e - &2, .
Taking ¢t =T we have
AT} = @arallZz < e o7& - @13,
which becomes, when n — oo,

w(T) = & = »(0).
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Uniqneness foliows from thé fact that v is agymptotically stable. [}

Corollary 1. (Stationary solution) Under the same hypothesis of periodic soly-
tion theorem, if f is time-independent, the asymplotically steble solution is constant
w time.

Proof. A constant function is periodic of period 1 /n, for every natural .. Therefore,
once taken an initial value, v is unique and periodic for every T' € Q. Since Q is
dense in R, » is constant. ‘ O
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